TMS320C6202 FIXED-POINT DIGITAL SIGNAL PROCESSOR

SPRS072B - AUGUST 1998 - REVISED AUGUST 1999

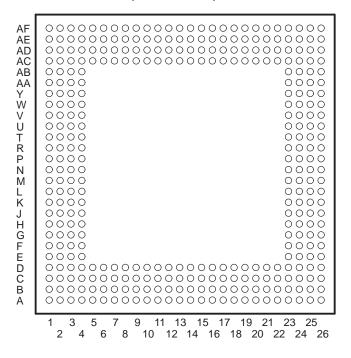
- Highest Performance Fixed-Point Digital Signal Processor (DSP) TMS320C6202
 - 4-ns Instruction Cycle Time
 - 250-MHz Clock Rate
 - Eight 32-Bit Instructions/Cycle
 - 2000 MIPS
- VelociTI™ Advanced Very Long Instruction Word (VLIW) 'C6200 CPU Core
 - Eight Highly Independent Functional Units:
 - Six ALUs (32-/40-Bit)
 - Two 16-Bit Multipliers (32-Bit Result)
 - Load-Store Architecture With 32 32-Bit General-Purpose Registers
 - Instruction Packing Reduces Code Size
 - All Instructions Conditional
- Instruction Set Features
 - Byte-Addressable (8-, 16-, 32-Bit Data)
 - 32-Bit Address Range
 - 8-Bit Overflow Protection
 - Saturation
 - Bit-Field Extract, Set, Clear
 - Bit-Counting
 - Normalization
- 3M-Bit On-Chip SRAM
 - 2M-Bit Internal Program/Cache
 - Two 128K-Byte Blocks Offer Improved Concurrency

Block 0: 128K Bytes Memory-Mapped Block 1: 128K Bytes Direct-Mapped Cache/Memory-Mapped

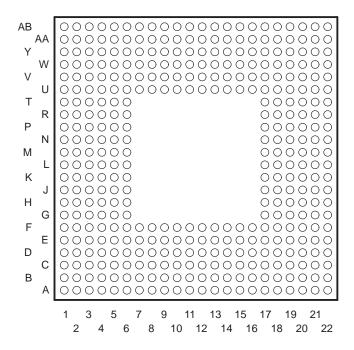
- 1M-Bit Dual-Access Internal Data (128K Bytes)
 - Two 64K-Byte Blocks Offer Improved Concurrency

- 32-Bit External Memory Interface (EMIF)
 - Glueless Interface to Synchronous Memories: SDRAM or SBSRAM
 - Glueless Interface to Asynchronous Memories: SRAM and EPROM
- Four-Channel Bootloading Direct-Memory-Access (DMA) Controller With an Auxiliary Channel
- Flexible Phase-Locked-Loop (PLL) Clock Generator
- 32-Bit Expansion Bus
 - Glueless/Low-Glue Interface to Popular PCI Bridge Chips
 - Glueless/Low-Glue Interface to Popular Synchronous or Asynchronous Microprocessor Buses
 - Master/Slave Functionality
 - Glueless Interface to Synchronous FIFOs and Asynchronous Peripherals
- Three Multichannel Buffered Serial Ports (McBSPs)
 - Direct Interface to T1/E1, MVIP, SCSA Framers
 - ST-Bus-Switching Compatible
 - Up to 256 Channels Each
 - AC97-Compatible
 - Serial-Peripheral-Interface (SPI)
 Compatible (Motorola™)
- Two 32-Bit General-Purpose Timers
- IEEE-1149.1 (JTAG[†])
 Boundary-Scan-Compatible
- 352-Pin BGA Package (GJL Suffix)
- 384-Pin BGA Package (GLS Suffix)
- 0.18-μm/5-Level Metal Process
 CMOS Technology
 - 3.3-V I/Os, 1.8-V Internal

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


VelociTI is a trademark of Texas Instruments Incorporated.

Motorola is a trademark of Motorola, Inc.


† IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.

GJL 352-PIN BALL GRID ARRAY (BGA) PACKAGE (BOTTOM VIEW)

GLS 384-PIN BALL GRID ARRAY (BGA) PACKAGE (BOTTOM VIEW)

description

The TMS320C62x DSPs (including the TMS320C6202 device) are the fixed-point DSP family in the TMS320C6000 platform. The TMS320C6202 ('C6202) device is based on the high-performance, advanced VelociTI very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI™), making this DSP an excellent choice for multichannel and multifunction applications.

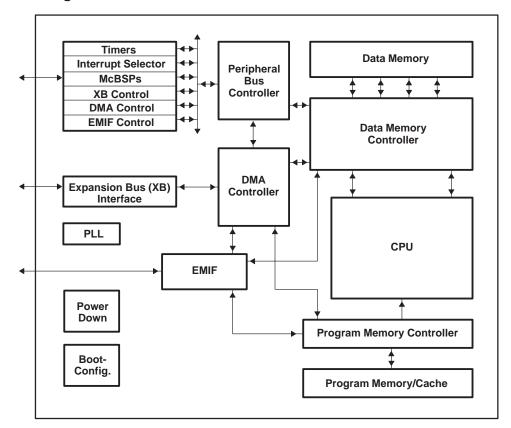
With performance of up to 2000 million instructions per second (MIPS) at a clock rate of 250 MHz, the 'C6202 offers cost-effective solutions to high-performance DSP programming challenges. The 'C6202 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32–bit word length and eight highly independent functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The 'C6202 can produce two multiply-accumulates (MACs) per cycle for a total of 500 million MACs per second (MMACS). The 'C6202 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals.

The 'C6202 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of two 128K-byte blocks, with one block configured as memory-mapped program space, and the other block user-configured as cache or memory-mapped program space. Data memory consists of two 64K-byte blocks of RAM. The peripheral set includes three multichannel buffered serial ports (McBSPs), two general-purpose timers, an expansion bus (XB) that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals.

The 'C6202 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code execution.

device characteristics

Table 1 provides an overview of the 'C6202 DSP. The table shows significant features of each device, including the capacity of on-chip RAM, the peripherals, the execution time, and the package type with pin count.


Table 1. Characteristics of the 'C6202 Processors

CHARACTERISTICS	DESCRIPTION
Device Number	TMS320C6202
On-Chip Memory	2 Mbit Program Memory (organized as 2 blocks) 1 Mbit Data Memory (organized as 2 blocks)
Peripherals	3 Multichannel Buffered Serial Ports (McBSP) 2 General-Purpose Timers External Memory Interface (EMIF) Expansion Bus (XB)
Cycle Time	4 ns
Package Type	27 mm × 27 mm, 352-Pin BGA (GJL) 18 mm × 18 mm, 384-Pin BGA (GLS)
Nominal Voltage	1.8 V Core 3.3 V I/O

TI is a trademark of Texas Instruments Incorporated. Windows is a registered trademark of the Microsoft Corporation.

functional block diagram

CPU description

The CPU fetches VelociTI advanced very-long instruction words (VLIW) (256 bits wide) to supply up to eight 32-bit instructions to the eight functional units during every clock cycle. The VelociTI VLIW architecture features controls by which all eight units do not have to be supplied with instructions if they are not ready to execute. The first bit of every 32-bit instruction determines if the next instruction belongs to the same execute packet as the previous instruction, or whether it should be executed in the following clock as a part of the next execute packet. Fetch packets are always 256 bits wide; however, the execute packets can vary in size. The variable-length execute packets are a key memory-saving feature, distinguishing the 'C6200 CPU from other VLIW architectures.

The CPU features two sets of functional units. Each set contains four units and a register file. One set contains functional units .L1, .S1, .M1, and .D1; the other set contains units .D2, .M2, .S2, and .L2. The two register files each contain 16 32-bit registers for a total of 32 general-purpose registers. The two sets of functional units, along with two register files, compose sides A and B of the CPU (see Figure 1 and Figure 2). The four functional units on each side of the CPU can freely share the 16 registers belonging to that side. Additionally, each side features a single data bus connected to all the registers on the other side, by which the two sets of functional units can access data from the register files on the opposite side. While register access by functional units on the same side of the CPU as the register file can service all the units in a single clock cycle, register access using the register file across the CPU supports one read and one write per cycle.

Another key feature of the 'C6200 CPU is the load/store architecture, where all instructions operate on registers (as opposed to data in memory). Two sets of data-addressing units (.D1 and .D2) are responsible for all data transfers between the register files and the memory. The data address driven by the .D units allows data addresses generated from one register file to be used to load or store data to or from the other register file. The 'C6200 CPU supports a variety of indirect addressing modes using either linear- or circular-addressing modes with 5- or 15-bit offsets. All instructions are conditional, and most can access any one of the 32 registers. Some registers, however, are singled out to support specific addressing or to hold the condition for conditional instructions (if the condition is not automatically "true"). The two .M functional units are dedicated for multiplies. The two .S and .L functional units perform a general set of arithmetic, logical, and branch functions with results available every clock cycle.

The processing flow begins when a 256-bit-wide instruction fetch packet is fetched from a program memory. The 32-bit instructions destined for the individual functional units are "linked" together by "1" bits in the least significant bit (LSB) position of the instructions. The instructions that are "chained" together for simultaneous execution (up to eight in total) compose an execute packet. A "0" in the LSB of an instruction breaks the chain, effectively placing the instructions that follow it in the next execute packet. If an execute packet crosses the fetch-packet boundary (256 bits wide), the assembler places it in the next fetch packet, while the remainder of the current fetch packet is padded with NOP instructions. The number of execute packets within a fetch packet can vary from one to eight. Execute packets are dispatched to their respective functional units at the rate of one per clock cycle and the next 256-bit fetch packet is not fetched until all the execute packets from the current fetch packet have been dispatched. After decoding, the instructions simultaneously drive all active functional units for a maximum execution rate of eight instructions every clock cycle. While most results are stored in 32-bit registers, they can be subsequently moved to memory as bytes or half-words as well. All load and store instructions are byte-, half-word, or word-addressable.

CPU description (continued)

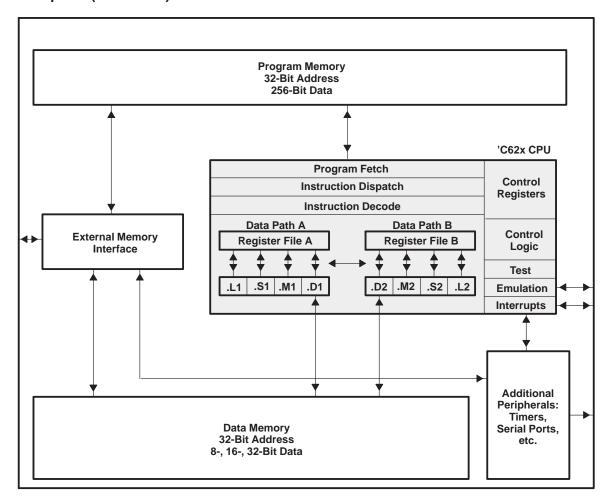


Figure 1. TMS320C62x CPU Block Diagram

CPU description (continued) Src1 L1 Src2 dst Jona dst

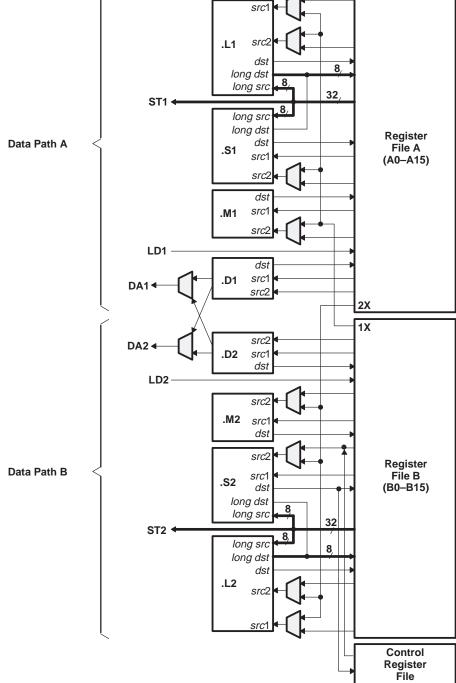
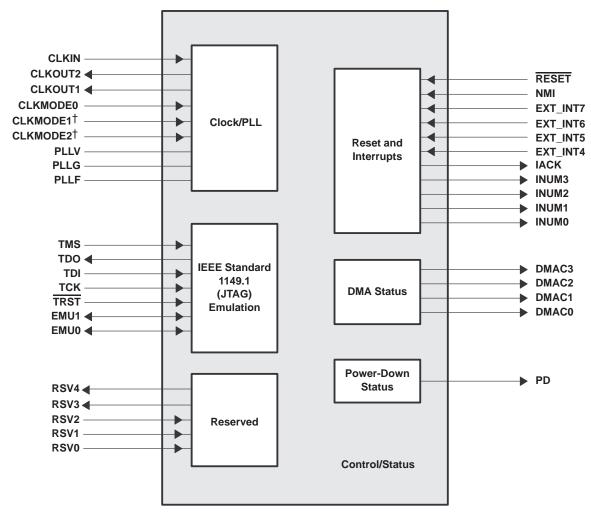



Figure 2. TMS320C62x CPU Data Paths

signal groups description

† For GLS devices only

Figure 3. CPU Signals

signal groups description (continued)

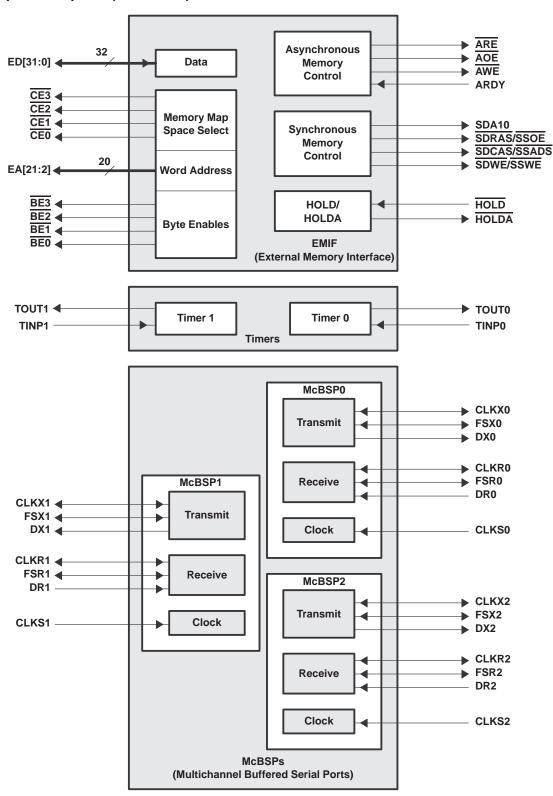


Figure 4. Peripheral Signals

signal groups description (continued)

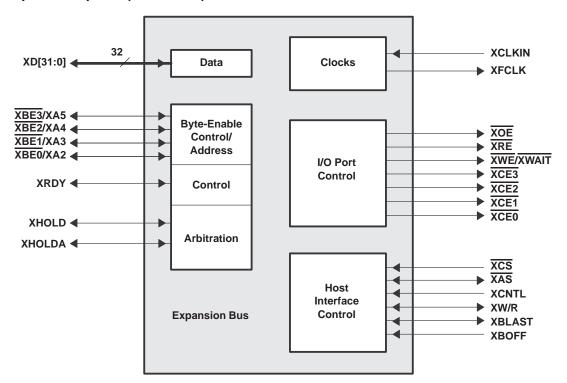


Figure 4. Peripheral Signals (Continued)

Signal Descriptions

SIGNAL	PIN	PIN NO.		DECORIDE			
NAME	GJL	GLS	TYPET	DESCRIPTION			
				CLOCK/PLL			
CLKIN	C12	B10	I	Clock Input			
CLKOUT1	AD20	Y18	0	Clock output at full device speed			
CLKOUT2	AC19	AB19	0	Clock output at half of device speed Used for synchronous memory interface			
CLKMODE0	B15	B12	I				
CLKMODE1	_	A9	I	Clock mode selects (Note: CLKMODE1 and CLKMODE2 selects are for GLS devices only) • Selects whether the CPU clock frequency = input clock frequency x4 or x1			
CLKMODE2	_	A14	I				
PLLV [‡]	D13	C11	Α§	PLL analog V _{CC} connection for the low-pass filter			
PLLG [‡]	D14	C12	Α§	PLL analog GND connection for the low-pass filter			
PLLF	C13	A11	Α§	PLL low-pass filter connection to external components and a bypass capacitor			
JTAG EMULATION							
TMS	AD7	Y5	I	JTAG test-port mode select (features an internal pullup)			
TDO	AE6	AA4	O/Z	JTAG test-port data out			
TDI	AF5	Y4	I	JTAG test-port data in (features an internal pullup)			
тск	AE5	AB2	I	JTAG test-port clock			
TRST	AC7	AA3	I	JTAG test-port reset (features an internal pulldown)			
EMU1	AF6	AA5	I/O/Z	Emulation pin 1, pullup with a dedicated 20-kΩ resistor¶			
EMU0	AC8	AB4	I/O/Z	Emulation pin 0, pullup with a dedicated 20-kΩ resistor¶			
				RESET AND INTERRUPTS			
RESET	K2	J3	I	Device reset			
NMI	L2	K2	I	Nonmaskable interrupt • Edge-driven (rising edge)			
EXT_INT7	V4	U2					
EXT_INT6	Y2	U3		External interrupts			
EXT_INT5	AA1	W1	ı	Edge-driven (rising edge)			
EXT_INT4	W4	V2					
IACK	Y1	V1	0	Interrupt acknowledge for all active interrupts serviced by the CPU			
INUM3	V2	R3					
INUM2	U4	T1		Active interrupt identification number			
INUM1	V3	T2	0	 Valid during IACK for all active interrupts (not just external) Encoding order follows the interrupt-service fetch-packet ordering 			
INUM0	W2	Т3	<u></u>	5			
				POWER-DOWN STATUS			
PD	AB2	Y2	0	Power-down modes 2 or 3 (active if high)			

[†] I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground

[‡] PLLV and PLLG are not part of external voltage supply or ground. See the *clock PLL* section for information on how to connect these pins.

[§] A = Analog Signal (PLL Filter)

 $[\]P$ For emulation and normal operation, pull up EMU1 and EMU0 with a dedicated 20-k Ω resistor. For boundary scan, pull down EMU1 and EMU0 with a dedicated 20-k Ω resistor.

SIGNAL	PIN	PIN NO.		Signal Descriptions (Continued)					
NAME	GJL	GLS	TYPET	DESCRIPTION					
		0_0		EXPANSION BUS					
XCLKIN	A9	C8	ı	Expansion bus synchronous host interface clock input					
XFCLK	B9	A8	0	Expansion bus FIFO interface clock output					
XD31	D15	C13							
XD30	B16	A13	1						
XD29	A17	C14							
XD28	B17	B14	1						
XD27	D16	B15	1						
XD26	A18	C15	1						
XD25	B18	A15	1						
XD24	D17	B16	1						
XD23	C18	C16]						
XD22	A20	A17	1						
XD21	D18	B17	1	Expansion bus data Used for transfer of data, address, and control Also controls initialization of DSP modes and expansion bus at reset via pullup/pulldown resistors XCE[3:0] memory type XBLAST polarity XW/R polarity Asynchronous or synchronous host operation Arbitration mode (internal or external) FIFO mode					
XD20	C19	C17	1						
XD19	A21	B18							
XD18	D19	A19							
XD17	C20	C18	1						
XD16	B21	B19	I/O/Z						
XD15	A22	C19	1/0/2						
XD14	D20	B20	1						
XD13	B22	A21	1						
XD12	E25	C21	1	Little endian/big endian					
XD11	F24	D20	1	- Boot mode					
XD10	E26	B22	1						
XD9	F25	D21	1						
XD8	G24	E20]						
XD7	H23	E21]						
XD6	F26	D22]						
XD5	G25	F20]						
XD4	J23	F21							
XD3	G26	E22							
XD2	H25	G20							
XD1	J24	G21							
XD0	K23	G22							
XCE3	F2	D2							
XCE2	E1	B1] 0/7	Expansion bus I/O port memory space enables					
XCE1	F3	D3	O/Z	Enabled by bits 28, 29, and 30 of the word address Only one asserted during any I/O port data access					
XCE0	E2	C2]	,					

 $[\]dagger$ I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground

SIGNAL	PIN	NO.	Π.		
NAME	GJL	GLS	TYPE	DESCRIPTION	
	•	•		EXPANSION BUS (CONTINUED)	
XBE3/XA5	C7	C5			
XBE2/XA4	D8	A4	1,077	Expansion bus multiplexed byte-enable control/address signals	
XBE1/XA3	A6	B5	1/O/Z	Act as byte enable for host port operation Act as address for I/O port operation	
XBE0/XA2	C8	C6	1	The de dad loss for the post operation	
XOE	A7	A6	O/Z	Expansion bus I/O port output enable	
XRE	C9	C7	O/Z	Expansion bus I/O port read enable	
XWE/XWAIT	D10	B7	O/Z	Expansion bus I/O port write enable and host port wait signals	
XCS	A10	C9	ı	Expansion bus host port chip-select input	
XAS	D9	B6	I/O/Z	Expansion bus host port address strobe	
XCNTL	B10	B9	ı	Expansion bus host control. XCNTL selects between expansion bus address or data register	
XW/R	D11	B8	I/O/Z	Expansion bus host port write/read enable. XW/R polarity selected at reset	
XRDY	A5	C4	I/O/Z	Expansion bus host port ready (active low) and I/O port ready (active high)	
XBLAST	B6	B4	I/O/Z	Expansion bus host port burst last–polarity selected at reset	
XBOFF	B11	A10	ı	Expansion bus back off	
XHOLD	B5	A2	I/O/Z	Expansion bus hold request	
XHOLDA	D7	B3	I/O/Z	Expansion bus hold acknowledge	
		EI	MIF – CON	ITROL SIGNALS COMMON TO ALL TYPES OF MEMORY	
CE3	AB25	Y21			
CE2	AA24	W20	0/7	Memory space enables Enabled by bits 24 and 25 of the word address Only one asserted during any external data access	
CE1	AB26	AA22	O/Z		
CE0	AA25	W21	1	and account and any statement and account	
BE3	Y24	V20		Byte-enable control	
BE2	W23	V21	0/7	Decoded from the two lowest bits of the internal address	
BE1	AA26	W22	O/Z	Byte-write enables for most types of memory	
BE0	Y25	U20	1	Can be directly connected to SDRAM read and write mask signal (SDQM)	
				EMIF – ADDRESS	
EA21	J25	H20			
EA20	J26	H21]		
EA19	L23	H22]		
EA18	K25	J20]		
EA17	L24	J21]		
EA16	L25	K21	O/Z	External address (word address)	
EA15	M23	K20]		
EA14	M24	K22]		
EA13	M25	L21]		
EA12	N23	L20]		
EA11	P24	L22]		

FA11 P24 L22 | The state of the

SPRS072B - AUGUST 1998 - REVISED AUGUST 1999

SIGNAL	PIN	NO.	1	Signal Descriptions (Continued)
SIGNAL NAME	GJL	GLS	TYPET	DESCRIPTION
	LOSE	1 020		EMIF – ADDRESS (CONTINUED)
EA10	P23	M20		
EA9	R25	M21		
EA8	R24	N22		
EA7	R23	N20		
EA6	T25	N21	O/Z	External address (word address)
EA5	T24	P21	1	
EA4	U25	P20		
EA3	T23	R22		
EA2	V26	R21		
				EMIF – DATA
ED31	AD8	Y6		
ED30	AC9	AA6		
ED29	AF7	AB6		
ED28	AD9	Y7		
ED27	AC10	AA7		
ED26	AE9	AB8		
ED25	AF9	Y8		
ED24	AC11	AA8		
ED23	AE10	AA9		
ED22	AD11	Y9		
ED21	AE11	AB10		
ED20	AC12	Y10		
ED19	AD12	AA10		
ED18	AE12	AA11		
ED17	AC13	Y11		
ED16	AD14	AB12	I/O/Z	External data
ED15	AC14	Y12	"""	Enormal data
ED14	AE15	AA12		
ED13	AD15	AA13		
ED12	AC15	Y13		
ED11	AE16	AB13		
ED10	AD16	Y14		
ED9	AE17	AA14		
ED8	AC16	AA15		
ED7	AF18	Y15		
ED6	AE18	AB15		
ED5	AC17	AA16		
ED4	AD18	Y16		
ED3	AF20	AB17		
ED2	AC18	AA17		
ED1	AD19	Y17		
ED0	AF21	AA18		

[†] I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground

CIONAL	PIN NO.					
SIGNAL NAME	GJL	GLS	TYPET	DESCRIPTION		
IVANIE	GJL	GLS	EMI	I		
ARE	V24	T21	O/Z	Asynchronous memory read enable		
AOE	V24 V25	R20	0/Z 0/Z	Asynchronous memory output enable		
AWE		T22	0/Z			
	U23		0/2	Asynchronous memory write enable		
ARDY	W25	T20	IOUS DD/	Asynchronous memory ready input		
CDA40				AM (SDRAM)/SYNCHRONOUS BURST SRAM (SBSRAM) CONTROL		
SDA10	AE21	AA19	O/Z	SDRAM address 10 (separate for deactivate command)		
SDCAS/SSADS	AE22	AB21	O/Z	SDRAM column-address strobe/SBSRAM address strobe		
SDRAS/SSOE	AF22	Y19	O/Z	SDRAM row-address strobe/SBSRAM output enable		
SDWE/SSWE	AC20	AA20	O/Z	SDRAM write enable/SBSRAM write enable		
				EMIF – BUS ARBITRATION		
HOLD	Y26	V22	ı	Hold request from the host		
HOLDA	V23	U21	0	Hold-request-acknowledge to the host		
		2	1	TIMERS		
TOUT1	J4	F2	0	Timer 1 or general-purpose output		
TINP1	G2	F3	ı	Timer 1 or general-purpose input		
TOUT0	F1	D1	0	Timer 0 or general-purpose output		
TINP0	H4	E2	I	Timer 0 or general-purpose input		
				DMA ACTION COMPLETE STATUS		
DMAC3	Y3	V3				
DMAC2	AA2	W2	0	DMA action complete		
DMAC1	AB1	AA1				
DMAC0	AA3	W3				
			MULTICH	IANNEL BUFFERED SERIAL PORT 0 (McBSP0)		
CLKS0	M4	K3	I	External clock source (as opposed to internal)		
CLKR0	M2	L2	I/O/Z	Receive clock		
CLKX0	МЗ	K1	I/O/Z	Transmit clock		
DR0	R2	M2	ı	Receive data		
DX0	P4	M3	O/Z	Transmit data		
FSR0	N3	M1	I/O/Z	Receive frame sync		
FSX0	N4	L3	I/O/Z	Transmit frame sync		
				IANNEL BUFFERED SERIAL PORT 1 (McBSP1)		
CLKS1	G1	E1	ı	External clock source (as opposed to internal)		
CLKR1	J3	G2	I/O/Z	Receive clock		
CLKX1	H2	G3	I/O/Z	Transmit clock		
DR1	L4	H1	ı	Receive data		
DX1	J1	H2	O/Z	Transmit data		
FSR1	J2	H3	I/O/Z	Receive frame sync		
FSX1	K4	G1	I/O/Z	Transmit frame sync		

FSX1 K4 G1 I I/O/Z I transmit traine sync

† I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground

SPRS072B - AUGUST 1998 - REVISED AUGUST 1999

SIGNAL	PIN NO.			Signal Descriptions (Continued)
NAME	GJL	GLS	TYPET	DESCRIPTION
			MULT	ICHANNEL BUFFERED SERIAL PORT 2 (McBSP2)
CLKS2	R3	N1	ı	External clock source (as opposed to internal)
CLKR2	T2	N2	I/O/Z	Receive clock
CLKX2	R4	N3	I/O/Z	Transmit clock
DR2	V1	R2	I	Receive data
DX2	T4	R1	O/Z	Transmit data
FSR2	U2	P3	I/O/Z	Receive frame sync
FSX2	Т3	P2	I/O/Z	Transmit frame sync
				RESERVED FOR TEST
RSV0	L3	J2	I	Reserved for testing, pullup with a dedicated 20-k Ω resistor
RSV1	G3	E3	I	Reserved for testing, pullup with a dedicated 20-k Ω resistor
RSV2	A12	B11	I	Reserved for testing, pullup with a dedicated 20-kΩ resistor
RSV3	C15	B13	0	Reserved (leave unconnected, do not connect to power or ground)
RSV4	D12	C10	0	Reserved (leave unconnected, do not connect to power or ground)
				SUPPLY VOLTAGE PINS
	A11	А3		
	A16	A7		
	B7	A16		
	B8	A20		
	B19	D4	1	
	B20	D6]	
	C6	D7		
	C10	D9	1	
	C14	D10	1	
	C17	D13	1	
DV_{DD}	C21	D14	s	3.3-V supply voltage
	G4	D16	1	
	G23	D17	1	
	H3	D19	1	
	H24	F1]	
	K3	F4		
	K24	F19		
	L1	F22		
	L26	G4	1	
	N24	G19]	
	P3	J4]	

 $[\]dagger$ I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground

ADVANCE INFORMATION

SIGNAL	PIN	PIN NO.		Signal Descriptions (Continued)	
NAME	GJL	GLS	TYPET	DESCRIPTION	
	•			SUPPLY VOLTAGE PINS (CONTINUED)	
	T1	J19			
	T26	K4	1		
	U3	K19	1		
	U24	L1]		
	W3	M22			
	W24	N4			
	Y4	N19			
	Y23	P4			
	AD6	P19	ļ		
	AD10	T4			
	AD13	T19			
	AD17	U1	1		
	AD21	U4	S		
 	AE7	U19		3.3-V supply voltage	
DV _{DD}	AE8	U22			
	AE19	W4			
	AE20 AF11	W6 W7			
	AF16	W9			
	— AF16	W10			
	_	W13			
	_	W14			
	_	W16			
	_	W17			
	_	W19			
	_	AB5			
	_	AB9			
	_	AB14			
	_	AB18			
	A1	E7			
	A2	E8]		
	A3	E10]		
	A24	E11]		
	A25	E12]		
	A26	E13]		
CV _{DD}	B1	E15	S	1.8-V supply voltage	
	B2	E16			
	В3	F7			
	B24	F8			
	B25	F9			
	B26	F11			
	C1	F12			

[†] I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground

SPRS072B - AUGUST 1998 - REVISED AUGUST 1999

CICNIAI	PIN	NO		Signal Descriptions (Continued)
SIGNAL NAME	GJL	GLS	TYPET	DESCRIPTION
	302	1 323		SUPPLY VOLTAGE PINS (CONTINUED)
	C2	F14		
	C3	F15		
	C4	F16		
	C23	G5		
	C24	G6		
	C25	G17		
	C26	G18		
	D3	H5		
	D4	H6		
	D5	H17		
	D22	H18		
	D23	J6		
	D24	J17		
	E4	K5		
	E23	K18		
	AB4	L5		
	AB23	L6	- - - S	
	AC3	L17		
	AC4	L18		
	AC5	M5		
CV _{DD}	AC22 AC23	M6 M17		1.8-V supply voltage
	AC23	M18		
	AD1	N5		
	AD2	N18		
	AD3	P6		
	AD4	P17		
	AD23	R5		
	AD24	R6		
	AD25	R17		
	AD26	R18		
	AE1	T5		
	AE2	T6		
	AE3	T17		
	AE24	T18		
	AE25	U7		
	AE26	U8		
	AF1	U9		
	AF2	U11		
	AF3	U12		
	AF24	U14		
	AF25	U15		

[†] I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground

ADVANCE INFORMATION

SIGNAL	PIN NO.			Signal Descriptions (Continued)
NAME	GJL	GLS	TYPET	DESCRIPTION
	•	•		SUPPLY VOLTAGE PINS (CONTINUED)
	AF26	U16		
	_	V7		
	_	V8		
	_	V10		
CV_{DD}	_	V11	S	1.8-V supply voltage
	_	V12		
	_	V13		
	_	V15		
	_	V16		
				GROUND PINS
	A4	A1		
	A8	A5		Ground pins
	A13	A12		
	A14	A18		
	A15	A22		
	A19	B2		
	A23	B21		
	B4	C1		
	B12	C3 C20		
	B13 B14	C22	-	
	B23	D5	1	
	C5	D8	1	
	C11	D11	1	
V _{SS}	C16	D12	GND	
	C22	D15		
	D1	D18	1	
	D2	E4	1	
	D6	E5	1	
	D21	E6	1	
	D25	E9	1	
	D26	E14		
	E3	E17		
	E24	E18		
	F4	E19]	
	F23	F5		
	H1	F6		
l	H26	F10		

[†] I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground

SIGNAL	PIN	NO.	+	Signal Descriptions (Continued)
NAME	GJL	GLS	TYPET	DESCRIPTION
				GROUND PINS (CONTINUED)
	K1	F13		
	K26	F17		
	M1	M1 F18		
	M26	H4		
	N1	H19		
	N2	J1		
	N25	J5		
	N26	J18		
	P1	J22		
	P2	K6		
	P25	K17		
	P26	L4		
	R1	L19		
	R26	M4		
	U1	M19		
	U26	N6	-	
	W1	N17		
VSS	W26	P1	GND	Ground pins
	AA4	P5] 5.,,,,	
	AA23	P18		
	AB3	P22		
	AB24	R4		
	AC1	R19	4	
	AC2	U5		
	AC6	U6		
	AC21	U10		
	AC25	U13		
	AC26	U17		
	AD5 AD22	U18 V4		
	AE4	V4 V5		
	AE13	V5 V6		
	AE14	V6 V9		
	AE14 AE23	V9 V14		
	AF4	V17		
	AF8	V17		

[†] I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground

ADVANCE INFORMATION

SIGNAL	PIN	NO.	TYPE†	DESCRIPTION
NAME	GJL	GLS	ITPEI	
				GROUND PINS (CONTINUED)
	AF10	V19		
	AF12	W5		
	AF13	W8		
	AF14	W11		
	AF15	W12		
	AF17	W15		
	AF19	W18]	
	AF23	Y1		
	_	Y3		
V _{SS}	_	Y20	GND	Ground pins
1 55	_	Y22	GIND	Ground pins
	_	AA2		
	_	AA21		
	_	AB1		
	_	AB3		
	_	AB7		
	_	AB11		
	_	AB16		
	_	AB20		
	_	AB22		

[†] I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground

development support

Texas Instruments offers an extensive line of development tools for the 'C6200 generation of DSPs, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules.

The following products support development of 'C6200-based applications:

Software Development Tools:

Assembly optimizer
Assembler/Linker
Simulator
Optimizing ANSI C compiler
Application algorithms
C/Assembly debugger and code profiler

Hardware Development Tools:

Extended development system (XDS™) emulator (supports 'C6200 multiprocessor system debug) EVM (Evaluation Module)

The *TMS320 DSP Development Support Reference Guide* (SPRU011) contains information about development-support products for all TMS320 family member devices, including documentation. See this document for further information on TMS320 documentation or any TMS320 support products from Texas Instruments. An additional document, the *TMS320 Third-Party Support Reference Guide* (SPRU052), contains information about TMS320-related products from other companies in the industry. To receive TMS320 literature, contact the Literature Response Center at 800/477-8924.

See Table 2 for a complete listing of development-support tools for the 'C6200. For information on pricing and availability, contact the nearest TI field sales office or authorized distributor.

Table 2. TMS320C6xx Development-Support Tools

DEVELOPMENT TOOL	PLATFORM	PART NUMBER					
	Software						
C Compiler/Assembler/Linker/Assembly Optimizer	Win32™	TMDX3246855-07					
C Compiler/Assembler/Linker/Assembly Optimizer	SPARC™ Solaris™	TMDX3246555-07					
Simulator	Win32	TMDS3246851-07					
Simulator	SPARC Solaris	TMDS3246551-07					
XDS510™ Debugger/Emulation Software	Win32, Windows NT™	TMDX324016X-07					
	Hardware						
XDS510 Emulator [†]	PC	TMDS00510					
XDS510WS™ Emulator‡	SCSI	TMDS00510WS					
Software/Hardware							
EVM Evaluation Kit	PC/Win95/Windows NT	TMDX3260A6201					
EVM Evaluation Kit (including TMDX3246855–07)	PC/Win95/Windows NT	TMDX326006201					

[†] Includes XDS510 board and JTAG emulation cable. TMDX324016X-07 C-source Debugger/Emulation software is not included.

XDS, XDS510, and XDS510WS are trademarks of Texas Instruments Incorporated. Win32 and Windows NT are trademarks of Microsoft Corporation. SPARC is a trademark of SPARC International, Inc. Solaris is a trademark of Sun Microsystems, Inc.

[‡] Includes XDS510WS box, SCSI cable, power supply, and JTAG emulation cable.

device and development-support tool nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all TMS320 devices and support tools. Each TMS320 member has one of three prefixes: TMX, TMP, or TMS. Texas Instruments recommends two of three possible prefix designators for support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).

Device development evolutionary flow:

TMX Experimental device that is not necessarily representative of the final device's electrical

specifications

TMP Final silicon die that conforms to the device's electrical specifications but has not completed

quality and reliability verification

TMS Fully qualified production device

Support tool development evolutionary flow:

TMDX Development-support product that has not yet completed Texas Instruments internal qualification

testing.

TMDS Fully qualified development-support product

TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, GJL), the temperature range (for example, blank is the default commercial temperature range), and the device speed range in megahertz (for example, -250 is 250 MHz). Figure 5 provides a legend for reading the complete device name for any TMS320 family member.

device and development-support tool nomenclature (continued)

Figure 5. TMS320 Device Nomenclature (Including TMS320C6202)

documentation support

Extensive documentation supports all TMS320 family generations of devices from product announcement through applications development. The types of documentation available include: data sheets, such as this document, with design specifications; complete user's reference guides for all devices; technical briefs; development-support tools; and hardware and software applications. The following is a brief, descriptive list of support documentation specific to the 'C6x devices:

The *TMS320C6000 CPU and Instruction Set Reference Guide* (literature number SPRU189) describes the 'C6000 CPU architecture, instruction set, pipeline, and associated interrupts.

The *TMS320C6000 Peripherals Reference Guide* (literature number SPRU190) describes the functionality of the peripherals available on 'C6x devices, such as the external memory interface (EMIF), host-port interface (HPI), multichannel buffered serial ports (McBSPs), direct-memory-access (DMA), enhanced direct-memory-access (EDMA) controller, expansion bus (XB), clocking and phase-locked loop (PLL); and power-down modes. This guide also includes information on internal data and program memories.

The *TMS320C6000 Programmer's Guide* (literature number SPRU198) describes ways to optimize C and assembly code for 'C6x devices and includes application program examples.

The TMS320C6x C Source Debugger User's Guide (literature number SPRU188) describes how to invoke the 'C6x simulator and emulator versions of the C source debugger interface and discusses various aspects of the debugger, including: command entry, code execution, data management, breakpoints, profiling, and analysis.

The TMS320C6x Peripheral Support Library Programmer's Reference (literature number SPRU273) describes the contents of the 'C6x peripheral support library of functions and macros. It lists functions and macros both by header file and alphabetically, provides a complete description of each, and gives code examples to show how they are used.

TMS320C6000 Assembly Language Tools User's Guide (literature number SPRU186) describes the assembly language tools (assembler, linker, and other tools used to develop assembly language code), assembler directives, macros, common object file format, and symbolic debugging directives for the 'C6000 generation of devices.

The *TMS320C6x Evaluation Module Reference Guide* (literature number SPRU269) provides instructions for installing and operating the 'C6x evaluation module. It also includes support software documentation, application programming interfaces, and technical reference material.

TMS320C62x Multichannel Evaluation Module User's Guide (literature number SPRU285) provides instructions for installing and operating the 'C62x multichannel evaluation module. It also includes support software documentation, application programming interfaces, and technical reference material.

TMS320C62x Multichannel Evaluation Module Technical Reference (SPRU308) provides provides technical reference information for the 'C62x multichannel evaluation module (McEVM). It includes support software documentation, application programming interface references, and hardware descriptions for the 'C62x McEVM.

TMS320C6000 DSP/BIOS User's Guide (literature number SPRU303) describes how to use DSP/BIOS tools and APIs to analyze embedded real-time DSP applications.

Code Composer User's Guide (literature number SPRU296) explains how to use the Code Composer development environment to build and debug embedded real-time DSP applications.

Code Composer Studio Tutorial (literature number SPRU301) introduces the Code Composer Studio integrated development environment and software tools.

TMS320C6202 FIXED-POINT DIGITAL SIGNAL PROCESSOR

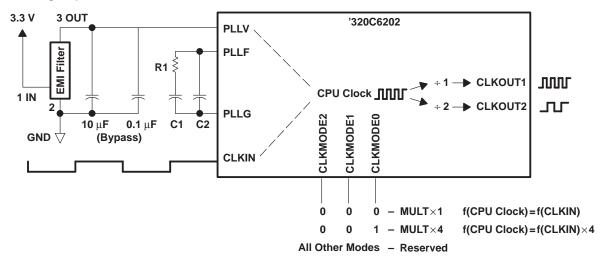
SPRS072B - AUGUST 1998 - REVISED AUGUST 1999

documentation support (continued)

The *TMS320C6000 Technical Brief* (literature number SPRU197) gives an introduction to the 'C62x/C67x devices, associated development tools, and third-party support.

A series of DSP textbooks is published by Prentice-Hall and John Wiley & Sons to support DSP research and education. The TMS320 newsletter, *Details on Signal Processing*, is published quarterly and distributed to update TMS320 customers on product information. The TMS320 DSP bulletin board service (BBS) provides access to information pertaining to the TMS320 family, including documentation, source code, and object code for many DSP algorithms and utilities. The BBS can be reached at 281/274-2323.

Information regarding TI DSP products is also available on the Worldwide Web at http://www.ti.com uniform resource locator (URL).



clock PLL

All of the internal 'C6202 clocks are generated from a single source through the CLKIN pin. This source clock either drives the PLL, which generates the internal CPU clock, or bypasses the PLL to become the CPU clock.

To use the PLL to generate the CPU clock, the filter circuit shown in Figure 6 must be properly designed.

To configure the 'C6202 PLL clock for proper operation, see Figure 6 and Table 3. To minimize the clock jitter, a single clean power supply should power both the 'C6202 device and the external clock oscillator circuit. The minimum CLKIN rise and fall times should also be observed. See the *input and output clocks* section for input clock timing requirements.

- NOTES: A. The 'C6202 PLL can generate CPU clock frequencies in the range of 130 MHz to 250 MHz. For frequencies below 130 MHz, the PLL should be configured to operate in bypass mode.
 - B. For the 'C6202, values for C1, C2, and R1 are fixed and apply to all valid frequency ranges of CLKIN and CPU clock frequency.
 - C. For CLKMODE x1, the PLL is bypassed and all six external PLL components can be removed. For this case, the PLLV terminal has to be connected to a clean 3.3-V supply and the PLLG and PLLF terminals should be tied together.
 - D. The 3.3-V supply for the EMI filter (and PLLV) must be from the same 3.3-V power plane supplying the I/O voltage, DV_{DD}.
 - E. EMI filter manufacturer TDK part number ACF451832-153-T
 - F. CLKMODE2 and CLKMODE1 exist only on the GLS device. There are no equivalent connections on the GJL device.
 - G. The reserved PLL clock modes (GLS devices only) may or may not be supported on future devices as additional PLL multiply factors. For future flexibility, a board can be designed so that these inputs are configurable (either through jumpers, switches, or 0-Ω resistors).

Figure 6. PLL Block Diagram

Table 3. TMS320C6202 PLL Component Selection Table[†]

CLKMODE	CLKIN RANGE (MHz)	CPU CLOCK FREQUENCY (CLKOUT1) RANGE (MHz)	CLKOUT2 RANGE (MHz)	R1 (Ω)	C1 (nF)	C2 (pF)	TYPICAL LOCK TIME (μs)
x4	32.5-62.5	130–250	65–125	60.4	27	560	75

[†] Under some operating conditions, the maximum PLL lock time may vary as much as 150% from the specified typical value. For example, if the typical lock time is specified as 100 µs, the maximum value may be as long as 250 µs.

power-supply sequencing

The 1.8-V supply powers the core and the 3.3-V supply powers the I/O buffers. The core supply should be powered up first, or at the same time as the I/O buffers supply. This is to ensure that the I/O buffers have valid inputs from the core before the output buffers are powered up, thus preventing bus contention with other chips on the board.

ADVANCE INFORMATION

absolute maximum ratings over operating case temperature range (unless otherwise noted)

Supply voltage range, CV _{DD} (see Note 1) – 0.3 V to 2.3 V
Supply voltage range, DV _{DD} (see Note 1)
Input voltage range
Output voltage range
Operating case temperature range, T _C
Storage temperature range, T _{stg}

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		MIN	NOM	MAX	UNIT
CVDD	Supply voltage	1.71	1.8	1.89	V
DV_{DD}	Supply voltage	3.14	3.30	3.46	V
VSS	Supply ground	0	0	0	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
loh	High-level output current			-8	mA
IOL	Low-level output current			8	mA
TC	Operating case temperature	0		90	°C

electrical characteristics over recommended ranges of supply voltage and operating case temperature (unless otherwise noted)

	PARAMETER	TEST	CONDITIONS	MIN	TYP	MAX	UNIT
VOH	High-level output voltage	$DV_{DD} = MIN,$	I _{OH} = MAX	2.4			V
VOL	Low-level output voltage	$DV_{DD} = MIN,$	$DV_{DD} = MIN, I_{OL} = MAX$			0.6	V
II	Input current [‡]	$V_I = V_{SS}$ to DV_{DD}	$V_I = V_{SS}$ to DV_{DD}			±10	uA
loz	Off-state output current	$V_O = DV_{DD}$ or 0 \	$V_O = DV_{DD}$ or 0 V				uA
I _{DD2V}	Supply current, CPU + CPU memory access§	$CV_{DD} = NOM,$	CPU clock = 200 MHz		TBD		mA
I _{DD2V}	Supply current, peripherals¶	$CV_{DD} = NOM,$	CPU clock = 200 MHz		TBD		mA
I _{DD3V}	Supply current, I/O pins#	$DV_{DD} = NOM,$	CPU clock = 200 MHz		TBD		mA
Ci	Input capacitance					10	pF
Co	Output capacitance					10	pF

TMS and TDI are not included due to internal pullups. TRST is not included due to internal pulldown.

50% of time: 8 instructions per cycle, 32-bit DMEM access per cycle 50% of time: 2 instructions per cycle, 16-bit DMEM access per cycle

¶ Measured with average peripheral activity: 50% of time: Timers at max rate

McBSPs at E1 rate

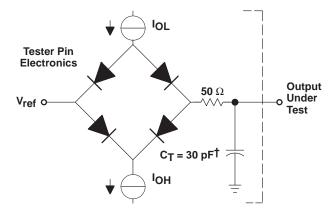
DMA burst transfer between DMEM and SDRAM

50% of time: Timers at max rate McBSPs at E1 rate

DMA servicing McBSPs

Measured with average I/O activity (30-pF load, SDCLK on):

Reads from external SDRAM 25% of time: 25% of time: Writes to external SDRAM


50% of time: No activity

NOTE 1: All voltage values are with respect to VSS.

[§] Measured with average CPU activity:

PARAMETER MEASUREMENT INFORMATION

[†] Typical distributed load circuit capacitance

signal transition levels

All input and output timing parameters are referenced to 1.5 V for both "0" and "1" logic levels.

Figure 7. Input and Output Voltage Reference Levels for ac Timing Measurements

INPUT AND OUTPUT CLOCKS

timing requirements for CLKIN† (see Figure 8)

				'C620	2-200		'C6202-233			'C6202-250					
NO.			CLKN = 3	-	CLKN = 2	_	CLKN = 2	-	CLKN = 1	_	CLKN = 2	_	CLKN = 3	-	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
1	t _C (CLKIN)	Cycle time, CLKIN	20		5		17.2		4.3		16		4		ns
2	tw(CLKINH)	Pulse duration, CLKIN high	8		2.25		6.9		1.9		6.4		1.8		ns
3	tw(CLKINL)	Pulse duration, CLKIN low	8		2.25		6.9		1.9		6.4		1.8		ns
4	tt(CLKIN)	Transition time, CLKIN		5		0.6		5		0.6	İ	5		0.6	ns

[†] The reference points for the rise and fall transitions are measured at 20% and 80%, respectively, of VIH.

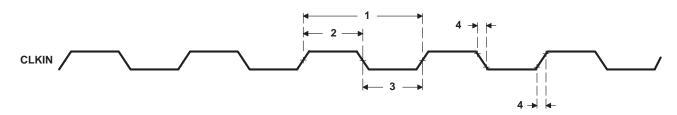


Figure 8. CLKIN Timings

timing requirements for XCLKIN†‡ (see Figure 9)

NO.			'C620 'C620 'C620	2-233	UNIT
			MIN	MAX	
1	tc(XCLKIN)	Cycle time, XCLKIN	4P		ns
2	tw(XCLKINH)	Pulse duration, XCLKIN high	1.8P		ns
3	tw(XCLKINL)	Pulse duration, XCLKIN low	1.8P		ns
4	t _t (XCLKIN)	Transition time, XCLKIN		0.6	ns

 $^{^{\}dagger}$ The reference points for the rise and fall transitions are measured at 20% and 80%, respectively, of V_{IH}.

 $[\]ddagger$ P = 1/CPU clock frequency in nanoseconds (ns).

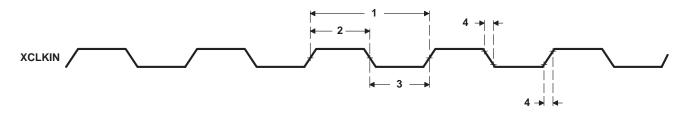


Figure 9. XCLKIN Timings

INPUT AND OUTPUT CLOCKS (CONTINUED)

switching characteristics for CLKOUT1^{†‡} (see Figure 10)

NO.		PARAMETER	'C6202-200 'C6202-233 'C6202-250						
			CLKMOI	DE = x4	CLKMOD	UNIT			
			MIN	MAX	MIN	MAX			
1	tc(CKO1)	Cycle time, CLKOUT1	P – 0.7	P + 0.7	P – 0.7	P + 0.7	ns		
2	tw(CKO1H)	Pulse duration, CLKOUT1 high	(P/2) - 0.5	(P/2) + 0.5	PH – 0.5	PH + 0.5	ns		
3	tw(CKO1L)	Pulse duration, CLKOUT1 low	(P/2) - 0.5	(P/2) + 0.5	PL - 0.5	PL + 0.5	ns		
4	tt(CKO1)	Transition time, CLKOUT1		0.6		0.6	ns		

[†] PH is the high period of CLKIN in ns and PL is the low period of CLKIN in ns.

 $[\]ddagger$ P = 1/CPU clock frequency in nanoseconds (ns).

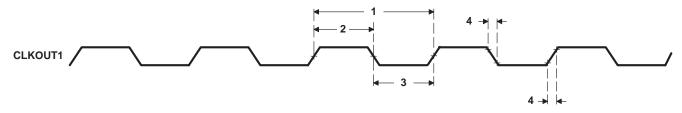


Figure 10. CLKOUT1 Timings

switching characteristics for CLKOUT2[‡] (see Figure 11)

NO.		PARAMETER	'C6202 'C6202 'C6202	UNIT	
				MAX	
1	tc(CKO2)	Cycle time, CLKOUT2	2P - 0.7	2P + 0.7	ns
2	tw(CKO2H)	Pulse duration, CLKOUT2 high	P – 0.7	P + 0.7	ns
3	tw(CKO2L)	Pulse duration, CLKOUT2 low	P – 0.7	P + 0.7	ns
4	^t t(CKO2)	Transition time, CLKOUT2		0.6	ns

 $[\]ddagger$ P = 1/CPU clock frequency in nanoseconds (ns).

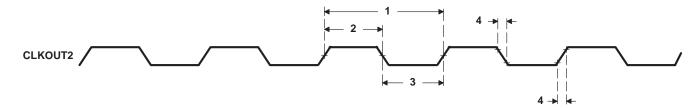


Figure 11. CLKOUT2 Timings

INPUT AND OUTPUT CLOCKS (CONTINUED)

switching characteristics for XFCLK^{†‡} (see Figure 12)

NO.		PARAMETER	'C620 'C620 'C620	UNIT	
			MIN	MAX	
1	tc(XFCK)	Cycle time, XFCLK	D * P – 0.7	D * P + 0.7	ns
2	tw(XFCKH)	Pulse duration, XFCLK high	(D/2) * P – 0.7	(D/2) * P + 0.7	ns
3	tw(XFCKL)	Pulse duration, XFCLK low	(D/2) * P – 0.7	(D/2) * P + 0.7	ns
4	t _t (XFCK)	Transition time, XFCLK		0.6	ns

 $[\]dagger$ P = 1/CPU clock frequency in ns.

[‡] D = 8, 6, 4, or 2; FIFO clock divide ratio, user-programmable

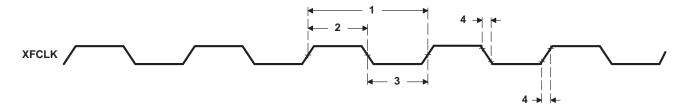


Figure 12. XFCLK Timings

ASYNCHRONOUS MEMORY TIMING

timing requirements for asynchronous memory cycles[†] (see Figure 13 – Figure 14)

NO.				'C6202-200 'C6202-233 'C6202-250	
			MIN	MAX	
6	t _{su} (EDV-CKO1H)	Setup time, read EDx valid before CLKOUT1 high	4.0		ns
7	th(CKO1H-EDV)	Hold time, read EDx valid after CLKOUT1 high	0		ns
10	tsu(ARDY-CKO1H)	Setup time, ARDY valid before CLKOUT1 high	4.0		ns
11	th(CKO1H-ARDY)	Hold time, ARDY valid after CLKOUT1 high	0		ns

[†] To ensure data setup time, simply program the strobe width wide enough. ARDY is internally synchronized. If ARDY does meet setup or hold time, it may be recognized in the current cycle or the next cycle. Thus, ARDY can be an asynchronous input.

switching characteristics for asynchronous memory cycles[‡] (see Figure 13 – Figure 14)

NO.		'C6202 'C6202 'C6202	UNIT		
			MIN	MAX	
1	td(CKO1H-CEV)	Delay time, CLKOUT1 high to CEx valid	0	4.0	ns
2	td(CKO1H-BEV)	Delay time, CLKOUT1 high to BEx valid	0	4.0	ns
3	td(CKO1H-BEIV)	Delay time, CLKOUT1 high to BEx invalid	0	4.0	ns
4	td(CKO1H-EAV)	Delay time, CLKOUT1 high to EAx valid	0	4.0	ns
5	td(CKO1H-EAIV)	Delay time, CLKOUT1 high to EAx invalid	0	4.0	ns
8	td(CKO1H-AOEV)	Delay time, CLKOUT1 high to AOE valid	0	4.0	ns
9	td(CKO1H-AREV)	Delay time, CLKOUT1 high to ARE valid	0	4.0	ns
12	td(CKO1H-EDV)	Delay time, CLKOUT1 high to EDx valid		4.0	ns
13	td(CKO1H-EDIV)	Delay time, CLKOUT1 high to EDx invalid	0		ns
14	td(CKO1H-AWEV)	Delay time, CLKOUT1 high to AWE valid	0	4.0	ns

[‡] The minimum delay is also the minimum output hold after CLKOUT1 high.

ASYNCHRONOUS MEMORY TIMING (CONTINUED)

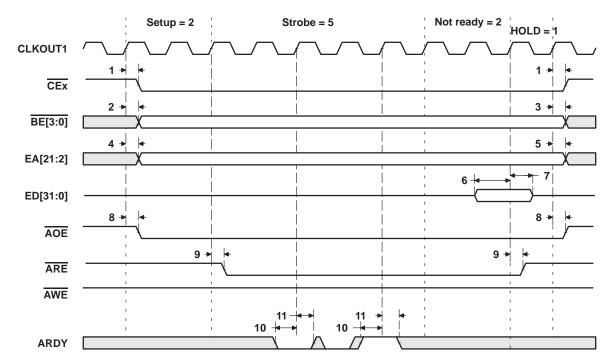


Figure 13. Asynchronous Memory Read Timing

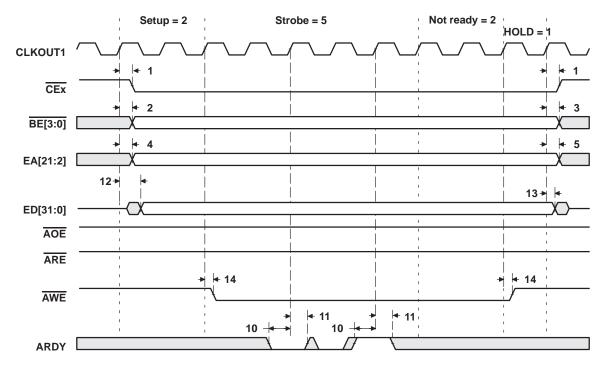


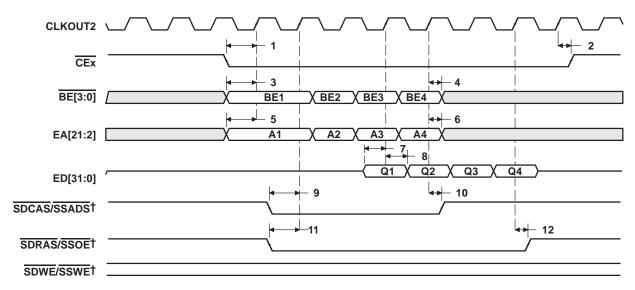
Figure 14. Asynchronous Memory Write Timing

SYNCHRONOUS-BURST MEMORY TIMING

timing requirements for synchronous-burst SRAM cycles (see Figure 15)

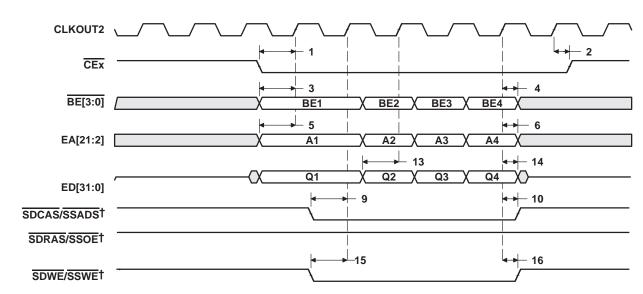
NO.			'C6202-200		'C6202-233		'C6202-250		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	UNII
7	t _{su} (EDV-CKO2H)	Setup time, read EDx valid before CLKOUT2 high	2.5		2.1		2		ns
8	th(CKO2H-EDV)	Hold time, read EDx valid after CLKOUT2 high	1.5		1.5		1.5		ns

switching characteristics for synchronous-burst SRAM cycles^{†‡} (see Figure 15 and Figure 16)


NO.	PARAMETER		'C6202-200		'C6202-233		'C6202-250		UNIT
NO.			MIN	MAX	MIN	MAX	MIN	MAX	UNII
1	tosu(CEV-CKO2H)	Output setup time, CEx valid before CLKOUT2 high	2P – 5.5		2P – 4.4		2P – 3.8		ns
2	toh(CKO2H-CEV)	Output hold time, CEx valid after CLKOUT2 high	1		1		1		ns
3	tosu(BEV-CKO2H)	Output setup time, BEx valid before CLKOUT2 high	2P – 5.5		2P – 4.4		2P – 3.8		ns
4	toh(CKO2H-BEIV)	Output hold time, BEx invalid after CLKOUT2 high	1		1		1		ns
5	tosu(EAV-CKO2H)	Output setup time, EAx valid before CLKOUT2 high	2P – 5.5		2P – 4.4		2P – 3.8		ns
6	toh(CKO2H-EAIV)	Output hold time, EAx invalid after CLKOUT2 high	1		1		1		ns
9	tosu(ADSV-CKO2H)	Output setup time, SDCAS/SSADS valid before CLKOUT2 high	2P – 5.5		2P – 4.4		2P – 3.8		ns
10	^t oh(CKO2H-ADSV)	Output hold time, SDCAS/SSADS valid after CLKOUT2 high	1		1		1		ns
11	tosu(OEV-CKO2H)	Output setup time, SDRAS/SSOE valid before CLKOUT2 high	2P – 5.5		2P – 4.4		2P – 3.8		ns
12	toh(CKO2H-OEV)	Output hold time, SDRAS/SSOE valid after CLKOUT2 high	1		1		1		ns
13	tosu(EDV-CKO2H)	Output setup time, EDx valid before CLKOUT2 high§	2P – 5.5		2P – 4.4		2P – 3.8		ns
14	toh(CKO2H-EDIV)	Output hold time, EDx invalid after CLKOUT2 high	1		1		1		ns
15	tosu(WEV-CKO2H)	Output setup time, SDWE/SSWE valid before CLKOUT2 high	2P – 5.5		2P – 4.4		2P – 3.8		ns
16	^t oh(CKO2H-WEV)	Output hold time, SDWE/SSWE valid after CLKOUT2 high	1		1		1		ns

 $^{^{\}dagger}$ P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.

^{\$\}frac{1}{5}\text{SDCAS/SSADS}, \text{SDRAS/SSOE}, and \text{SDWE/SSWE} operate as \text{SSADS}, \text{SSOE}, and \text{SSWE}, respectively, during SBSRAM accesses.


[§] For the first write in a series of one or more consecutive adjacent writes, the write data is generated one CLKOUT2 cycle early to accommodate the ED enable time.

SYNCHRONOUS-BURST MEMORY TIMING (CONTINUED)

† SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SSADS, SSOE, and SSWE, respectively, during SBSRAM accesses.

Figure 15. SBSRAM Read Timing

† SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SSADS, SSOE, and SSWE, respectively, during SBSRAM accesses.

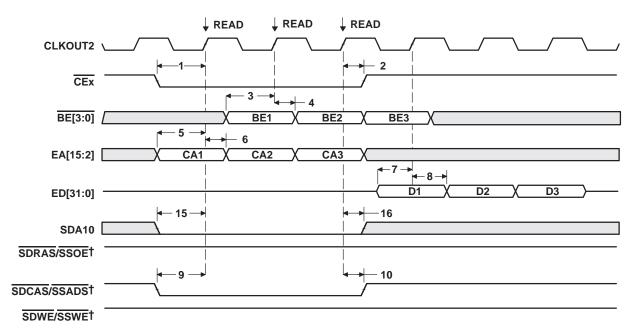
Figure 16. SBSRAM Write Timing

SYNCHRONOUS DRAM TIMING

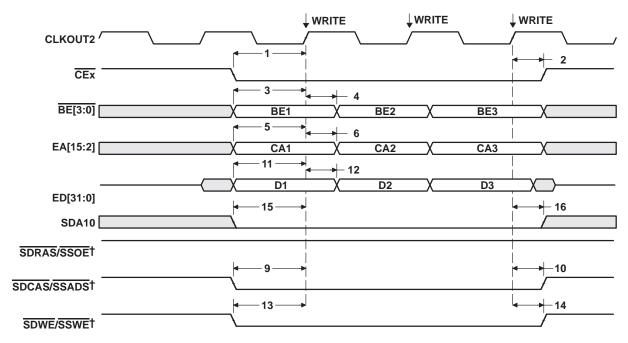
timing requirements for synchronous DRAM cycles (see Figure 17)

NO.		'C6202-200	'C6202-233	'C6202-250	UNIT
NO.		MIN MAX	MIN MAX	MIN MAX	UNIT
7	t _{SU(EDV-CKO2H)} Setup time, read EDx valid before CLKOUT2 high	1	1	0.5	ns
8	th(CKO2H-EDV) Hold time, read EDx valid after CLKOUT2 high	3	3	3	ns

switching characteristics for synchronous DRAM cycles^{†‡} (see Figure 17–Figure 22)


NO.		PARAMETER		200	'C6202-	233	'C6202-250		UNIT
NO.				MAX	MIN	MAX	MIN	MAX	UNIT
1	tosu(CEV-CKO2H)	Output setup time, CEx valid before CLKOUT2 high	2P – 6		2P – 4.6		2P – 4		ns
2	toh(CKO2H-CEV)	Output hold time, CEx valid after CLKOUT2 high	1.5		1.5		1.5		ns
3	tosu(BEV-CKO2H)	Output setup time, BEx valid before CLKOUT2 high	2P – 6		2P – 4.6		2P – 4		ns
4	toh(CKO2H-BEIV)	Output hold time, BEx invalid after CLKOUT2 high	1.5		1.5		1.5		ns
5	tosu(EAV-CKO2H)	Output setup time, EAx valid before CLKOUT2 high	2P – 6		2P – 4.6		2P – 4		ns
6	toh(CKO2H-EAIV)	Output hold time, EAx invalid after CLKOUT2 high	1.5		1.5		1.5		ns
9	tosu(CASV-CKO2H)	Output setup time, SDCAS/SSADS valid before CLKOUT2 high	2P – 6		2P – 4.6		2P – 4		ns
10	toh(CKO2H-CASV)	Output hold time, SDCAS/SSADS valid after CLKOUT2 high	1.5		1.5		1.5		ns
11	tosu(EDV-CKO2H)	Output setup time, EDx valid before CLKOUT2 high§	2P – 6		2P – 4.6		2P – 4		ns
12	toh(CKO2H-EDIV)	Output hold time, EDx invalid after CLKOUT2 high	1.5		1.5		1.5		ns
13	tosu(WEV-CKO2H)	Output setup time, SDWE/SSWE valid before CLKOUT2 high	2P – 6		2P – 4.6		2P – 4		ns
14	toh(CKO2H-WEV)	Output hold time, SDWE/SSWE valid after CLKOUT2 high	1.5		1.5		1.5		ns
15	tosu(SDA10V-CKO2H)	Output setup time, SDA10 valid before CLKOUT2 high	2P – 6		2P – 4.6		2P – 4		ns
16	toh(CKO2H-SDA10IV)	Output hold time, SDA10 invalid after CLKOUT2 high	1.5		1.5		1.5		ns
17	tosu(RASV-CKO2H)	Output setup time, SDRAS/SSOE valid before CLKOUT2 high	2P – 6		2P – 4.6		2P – 4		ns
18	toh(CKO2H-RASV)	Output hold time, SDRAS/SSOE valid after CLKOUT2 high	1.5		1.5		1.5		ns

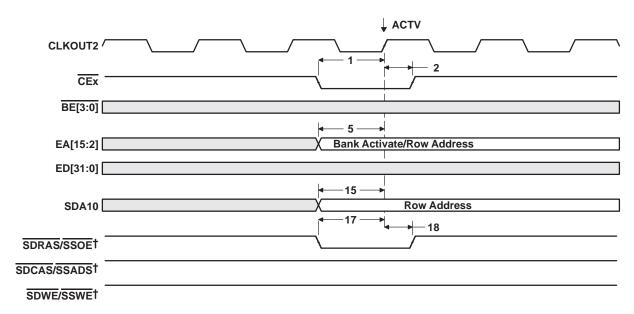
[†] P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns. ‡ SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SDCAS, SDRAS, and SDWE, respectively, during SDRAM accesses.


[§] For the first write in a series of one or more consecutive adjacent writes, the write data is generated one CLKOUT2 cycle early to accommodate the ED enable time.

SYNCHRONOUS DRAM TIMING (CONTINUED)

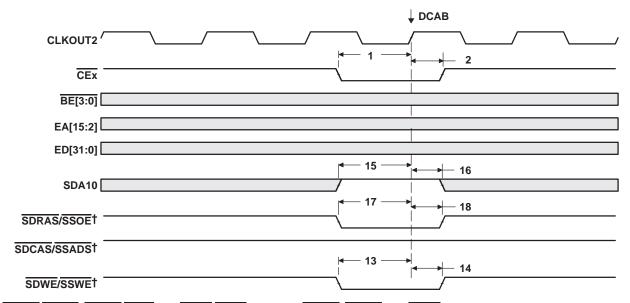
† SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SDCAS, SDRAS, and SDWE, respectively, during SDRAM accesses.

Figure 17. Three SDRAM READ Commands



† SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SDCAS, SDRAS, and SDWE, respectively, during SDRAM accesses.

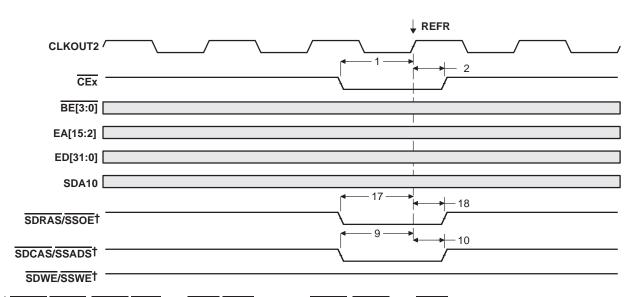
Figure 18. Three SDRAM WRT Commands



SYNCHRONOUS DRAM TIMING (CONTINUED)

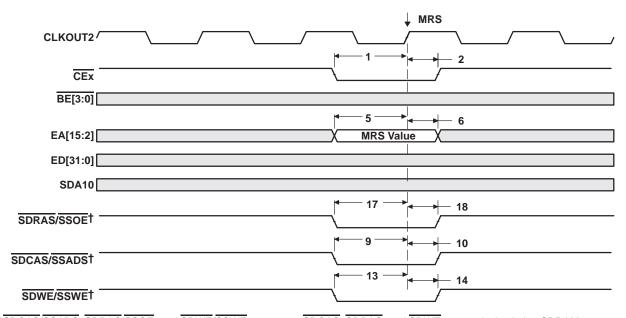
†SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SDCAS, SDRAS, and SDWE, respectively, during SDRAM accesses.

Figure 19. SDRAM ACTV Command



† SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SDCAS, SDRAS, and SDWE, respectively, during SDRAM accesses.

Figure 20. SDRAM DCAB Command



SYNCHRONOUS DRAM TIMING (CONTINUED)

† SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SDCAS, SDRAS, and SDWE, respectively, during SDRAM accesses.

Figure 21. SDRAM REFR Command

[†] SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SDCAS, SDRAS, and SDWE, respectively, during SDRAM accesses.

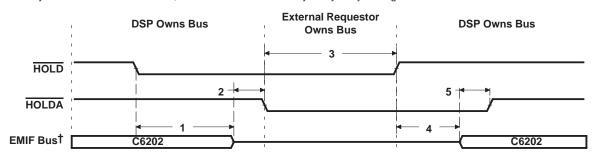
Figure 22. SDRAM MRS Command

HOLD/HOLDA TIMING

timing requirements for the HOLD/HOLDA cycles† (see Figure 23)

NO.		'C6202 'C6202 'C6202	2-233	UNIT
		MIN	MAX	
3	toh(HOLDAL-HOLD Hold time, HOLD low after HOLDA low	Р		ns

 $^{^{\}dagger}P = 1/CPU$ clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.


switching characteristics for the HOLD/HOLDA cycles^{†‡} (see Figure 23)

NO.		PARAMETER	'C6202 'C6202 'C6202	2-233	UNIT
			MIN	MAX	
1	^t R(HOLDL-EMHZ)	Response time, HOLD low to EMIF Bus high impedance	4P	§	ns
2	^t d(EMHZ-HOLDAL)	Delay time, EMIF Bus high impedance to HOLDA low	0	2P	ns
4	^t R(HOLDH-EMLZ)	Response time, HOLD high to EMIF Bus low impedance	3P	7P	ns
5	^t d(EMLZ-HOLDAH)	Delay time, EMIF Bus low impedance to HOLDA high	0	2P	ns

 † P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.

‡ EMIF Bus consists of CE[3:0], BE[3:0], ED[31:0], EA[21:2], ARE, AOE, AWE, SDCAS/SSADS, SDRAS/SSOE, SDWE/SSWE, and SDA10.

[§] All pending EMIF transactions are allowed to complete before HOLDA is asserted. The worst case for this is an asynchronous read or write with external ARDY used or a minimum of eight consecutive SDRAM reads or writes when RBTR8 = 1. If no bus transactions are occurring, then the minimum delay time can be achieved. Also, bus hold can be indefinitely delayed by setting NOHOLD = 1.

† EMIF Bus consists of CE[3:0], BE[3:0], ED[31:0], EA[21:2], ARE, AOE, AWE, SDCAS/SSADS, SDRAS/SSOE, SDWE/SSWE, and SDA10.

Figure 23. HOLD/HOLDA Timing

RESET TIMING

timing requirements for reset (see Figure 24)

NO.			'C6202-200 'C6202-233 'C6202-250		UNIT
			MIN	MAX	
1	tw(RST)	Width of the RESET pulse (PLL stable)†	10		CLKOUT1 cycles
		Width of the RESET pulse (PLL needs to sync up)‡	250		μs
11	t _{su(XD)}	Setup time, XD configuration bits valid before RESET high§	5		CLKOUT1 cycles
12	^t h(XD)	Hold time, XD configuration bits valid after RESET high\$	5		CLKOUT1 cycles

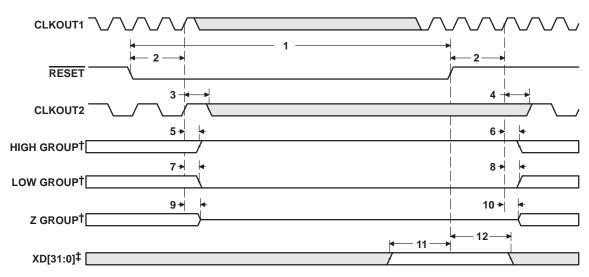
[†] This parameter applies to CLKMODE x1 when CLKIN is stable and applies to CLKMODE x4 when CLKIN and PLL are stable.

switching characteristics during reset¶ (see Figure 24)

NO.	PARAMETER				UNIT
			MIN	MAX	
2	^t R(RST)	Response time to change of value in RESET signal	2		CLKOUT1 cycles
3	td(CKO1H-CKO2IV)	Delay time, CLKOUT1 high to CLKOUT2 invalid	-1	10	ns
4	td(CKO1H-CKO2V)	Delay time, CLKOUT1 high to CLKOUT2 valid	-1	10	ns
5	td(CKO1H-XFCKIV)	Delay time, CLKOUT1 high to high group invalid	-1	10	ns
6	td(CKO1H-XFCKV)	Delay time, CLKOUT1 high to high group valid	-1	10	ns
7	td(CKO1H-LOWIV)	Delay time, CLKOUT1 high to low group invalid	-1	10	ns
8	td(CKO1H-LOWV)	Delay time, CLKOUT1 high to low group valid	-1	10	ns
9	td(CKO1H-ZHZ)	Delay time, CLKOUT1 high to Z group high impedance	-1	10	ns
10	td(CKO1H-ZV)	Delay time, CLKOUT1 high to Z group valid	-1	10	ns

[¶] High group consists of: Low group consists of: Z group consists of:

XFCLK


SDA10, <u>CLKX0</u>, <u>CLKX1</u>, <u>CLKX2</u>, <u>FSX0</u>, <u>FSX1</u>, <u>FSX2</u>, <u>DX0</u>, <u>DX1</u>, <u>DX2</u>, <u>CLKR0</u>, <u>CLKR1</u>, <u>CLKR2</u>, <u>FSR0</u>, <u>FSR1</u>, FSR2, XCE[3:0], XBE[3:0]/XA[5:2], XOE, XRE, XWE/XWAIT, XAS, XW/R, XRDY, XBLAST, XHOLD, and XHOLDA

[‡]This parameter only applies to CLKMODE x4. The RESET signal is not connected internally to the clock PLL circuit. The PLL, however, may need up to 250 µs to stabilize following device power up or after PLL configuration has been changed. During that time, RESET must be asserted to ensure proper device operation. See the clock PLL section for PLL lock times.

[§] XD[31:0] are the boot configuration pins during device reset.

RESET TIMING (CONTINUED)

† High group consists of:

XFCLK

Low group consists of: Z group consists of:

IACK, INUM[3:0], DMAC[3:0], PD, TOUTO, and TOUT1.

EA[21:2], ED[31:0], CE[3:0], BE[3:0], ARE, AWE, AOE, SDCAS/SSADS, SDRAS/SSOE, SDWE/SSWE, SDA10, CLKX0, CLKX1, CLKX2, FSX0, FSX1, FSX2, DX0, DX1, DX2, CLKR0, CLKR1, CLKR2, FSR0, FSR1, FSR2, XCE[3:0], XBE[3:0]/XA[5:2], XOE, XRE, XWE/XWAIT, XAS, XW/R, XRDY, XBLAST, XHOLD,

and XHOLDA.

Figure 24. Reset Timing

[‡] XD[31:0] are the boot configuration pins during device reset.

EXTERNAL INTERRUPT TIMING

timing requirements for interrupt response cycles[†] (see Figure 25)

NO.		'C6202-200 'C6202-233 'C6202-250 MIN MAX	UNIT
2	t _{W(ILOW)} Width of the interrupt pulse low	2P	ns
3	t _{w(IHIGH)} Width of the interrupt pulse high	2P	ns

 $[\]dagger P = 1/CPU$ clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.

switching characteristics during interrupt response cycles[†] (see Figure 25)

NO.	PARAMETER		'C6202 'C6202 'C6202	2-233	UNIT
		MIN	MAX		
1	^t R(EINTH – IACKH)	Response time, EXT_INTx high to IACK high	9P		ns
4	td(CKO2L-IACKV)	Delay time, CLKOUT2 low to IACK valid	0	10	ns
5	td(CKO2L-INUMV)	Delay time, CLKOUT2 low to INUMx valid	0	10	ns
6	td(CKO2L-INUMIV)	Delay time, CLKOUT2 low to INUMx invalid	0	10	ns

 † P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.

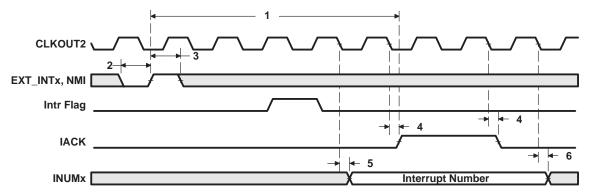
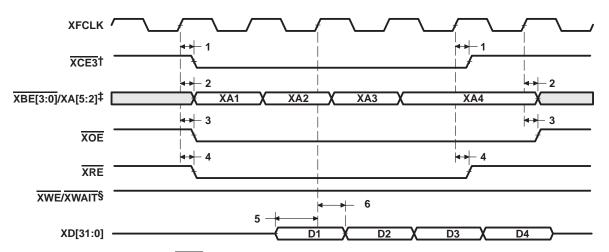


Figure 25. Interrupt Timing

EXPANSION BUS SYNCHRONOUS FIFO TIMING

timing requirements for synchronous FIFO interface (see Figure 26, Figure 27, and Figure 28)


NO.			MIN	MAX	UNIT
5	t _{su(XDV-XFCKH)}	Setup time, read XDx valid before XFCLK high	2.5		ns
6	th(XFCKH-XDV)	Hold time, read XDx valid after XFCLK high	2		ns

switching characteristics for synchronous FIFO interface (see Figure 26, Figure 27, and Figure 28)

NO.		PARAMETER	MIN	MAX	UNIT
1	td(XFCKH-XCEV)	Delay time, XFCLK high to XCEx valid	1.5	5.2	ns
2	td(XFCKH-XAV)	Delay time, XFCLK high to XBE[3:0]/XA[5:2] valid [†]	1.5	5.2	ns
3	td(XFCKH-XOEV)	Delay time, XFCLK high to XOE valid	1.5	5.2	ns
4	td(XFCKH-XREV)	Delay time, XFCLK high to XRE valid	1.5	5.2	ns
7	td(XFCKH-XWEV)	Delay time, XFCLK high to XWE/XWAIT‡ valid	1.5	5.2	ns
8	td(XFCKH-XDV)	Delay time, XFCLK high to XDx valid		5.2	ns
9	td(XFCKH-XDIV)	Delay time, XFCLK high to XDx invalid	1.5		ns

[†] XBE[3:0]/XA[5:2] operates as address signals XA[5:2] during synchronous FIFO accesses.

[‡] XWE/XWAIT operates as the write enable signal XWE during synchronous FIFO accesses.

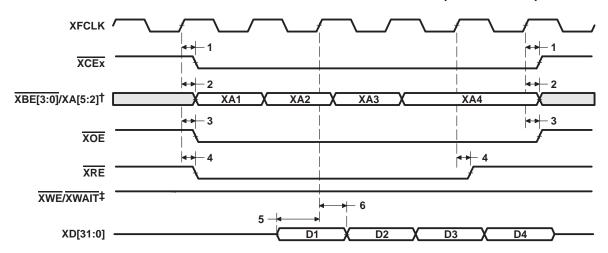

[†] FIFO read (glueless) mode only available in XCE3.

Figure 26. FIFO Read Timing (Glueless Read Mode)

[‡] XBE[3:0]/XA[5:2] operates as address signals XA[5:2] during synchronous FIFO accesses.

[§] XWE/XWAIT operates as the write enable signal XWE during synchronous FIFO accesses.

EXPANSION BUS SYNCHRONOUS FIFO TIMING (CONTINUED)

[†] XBE[3:0]/XA[5:2] operates as address signals XA[5:2] during synchronous FIFO accesses.

Figure 27. FIFO Read Timing

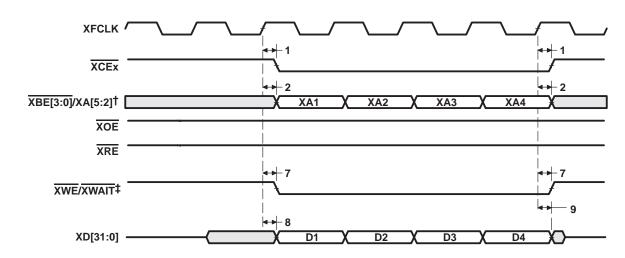


Figure 28. FIFO Write Timing

[‡] XWE/XWAIT operates as the write enable signal XWE during synchronous FIFO accesses.

 $[\]frac{\dagger}{XBE[3:0]/XA[5:2]} \ \text{operates as address signals XA[5:2]} \ \text{during synchronous FIFO accesses.} \\ \frac{\dagger}{XWE/XWAIT} \ \text{operates as the write enable signal } \ \overline{XWE} \ \text{during synchronous FIFO accesses.}$

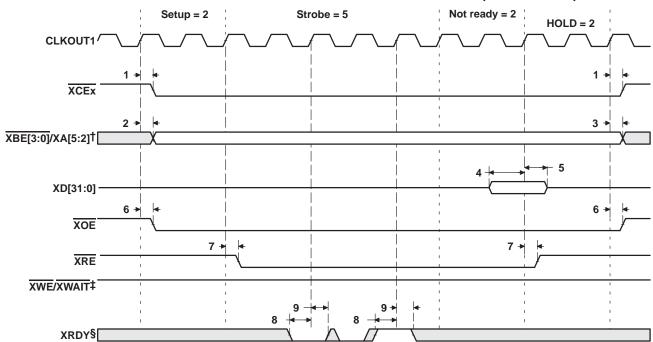
EXPANSION BUS ASYNCHRONOUS PERIPHERAL TIMING

timing requirements for asynchronous peripheral cycles[†] (see Figure 29–Figure 30)

NO.			'C6202 'C6202 'C6202	2-233	UNIT
			MIN	MAX]
4	t _{su(XDV-CKO1H)}	Setup time, read XDx valid before CLKOUT1 high	4.0		ns
5	th(CKO1H-XDV)	Hold time, read XDx valid after CLKOUT1 high	0		ns
8	tsu(XRY-CKO1H)	Setup time, XRDY valid before CLKOUT1 high	4.0	·	ns
9	th(CKO1H-XRY)	Hold time, XRDY valid after CLKOUT1 high	0		ns

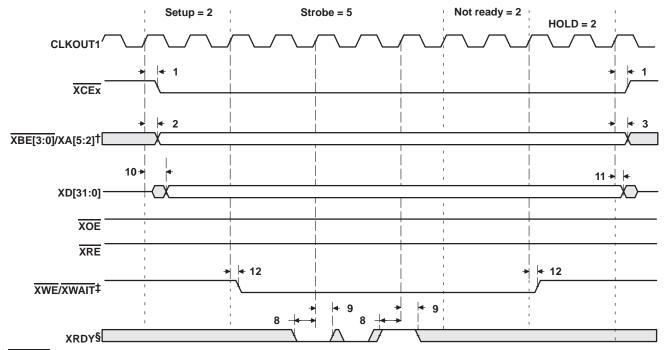
[†] To ensure data setup time, simply program the strobe width wide enough. XRDY is internally synchronized. If XRDY does meet setup or hold time, it may be recognized in the current cycle or the next cycle. Thus, XRDY can be an asynchronous input.

switching characteristics for asynchronous peripheral cyclesद (see Figure 29–Figure 30)


NO.		PARAMETER		'C6202-200 'C6202-233 'C6202-250		
			MIN	MAX		
1	td(CKO1H-XCEV)	Delay time, CLKOUT1 high to XCEx valid	0	4.0	ns	
2	td(CKO1H-XAV)	Delay time, CLKOUT1 high to XBE[3:0]/XA[5:2] valid	0	4.0	ns	
3	td(CKO1H-XAIV)	Delay time, CLKOUT1 high to XBE[3:0]/XA[5:2] invalid	0	4.0	ns	
6	td(CKO1H-XOEV)	Delay time, CLKOUT1 high to XOE valid	0	4.0	ns	
7	td(CKO1H-XREV)	Delay time, CLKOUT1 high to XRE valid	0	4.0	ns	
10	td(CKO1H-XDV)	Delay time, CLKOUT1 high to XDx valid		4.0	ns	
11	td(CKO1H-XDIV)	Delay time, CLKOUT1 high to XDx invalid	0	·	ns	
12	td(CKO1H-XWEV)	Delay time, CLKOUT1 high to XWE/XWAIT valid	0	4.0	ns	

[‡] The minimum delay is also the minimum output hold after CLKOUT1 high.

[§] XBE[3:0]/XA[5:2] operates as address signals XA[5:2] during asynchronous peripheral accesses.


[¶]XWE/XWAIT operates as the write enable signal XWE during asynchronous peripheral accesses.

EXPANSION BUS ASYNCHRONOUS PERIPHERAL TIMING (CONTINUED)

- † XBE[3:0]/XA[5:2] operates as address signals XA[5:2] during asynchronous peripheral accesses.
- \$\frac{1}{XWE}\text{XWAIT} operates as the write enable signal \text{XWE} during asynchronous peripheral accesses.
- § XRDY operates as active-high ready input during asynchronous peripheral accesses.

Figure 29. Expansion Bus Asynchronous Peripheral Read Timing

- † XBE[3:0]/XA[5:2] operates as address signals XA[5:2] during asynchronous peripheral accesses.
- ‡ XWE/XWAIT operates as the write enable signal XWE during asynchronous peripheral accesses.
- § XRDY operates as active-high ready input during asynchronous peripheral accesses.

Figure 30. Expansion Bus Asynchronous Peripheral Write Timing

EXPANSION BUS SYNCHRONOUS HOST PORT TIMING

timing requirements with external device as bus master (see Figure 31 and Figure 32)

NO.			MIN	MAX	UNIT
1	t _{su(XCSV-XCKIH)}	Setup time, XCS valid before XCLKIN high	4		ns
2	th(XCKIH-XCS)	Hold time, XCS valid after XCLKIN high	2.3		ns
3	t _{su(XAS-XCKIH)}	Setup time, XAS valid before XCLKIN high	4		ns
4	th(XCKIH-XAS)	Hold time, XAS valid after XCLKIN high	2.3		ns
5	tsu(XCTL-XCKIH)	Setup time, XCNTL valid before XCLKIN high	4		ns
6	th(XCKIH-XCTL)	Hold time, XCNTL valid after XCLKIN high	2.3		ns
7	t _{su(XWR-XCKIH)}	Setup time, XW/R valid before XCLKIN high†	4		ns
8	th(XCKIH-XWR)	Hold time, XW/R valid after XCLKIN high [†]	2.3		ns
9	t _{su(XBLTV-XCKIH)}	Setup time, XBLAST valid before XCLKIN high‡	4		ns
10	th(XCKIH-XBLTV)	Hold time, XBLAST valid after XCLKIN high‡	2.3		ns
16	t _{su(XBEV-XCKIH)}	Setup time, XBE[3:0]/XA[5:2] valid before XCLKIN high§	4		ns
17	th(XCKIH-XBEV)	Hold time, XBE[3:0]/XA[5:2] valid after XCLKIN high§	2.3		ns
18	t _{su(XD-XCKIH)}	Setup time, XDx valid before XCLKIN high	4		ns
19	th(XCKIH-XD)	Hold time, XDx valid after XCLKIN high	2.3		ns

[†] XW/R input/output polarity selected at boot.

switching characteristics with external device as bus master¶ (see Figure 31 and Figure 32)

NO.		PARAMETER	MIN	MAX	UNIT
11	td(XCKIH-XDLZ)	Delay time, XCLKIN high to XDx low impedance	5		ns
12	td(XCKIH-XDV)	Delay time, XCLKIN high to XDx valid		15.5	ns
13	td(XCKIH-XDIV)	Delay time, XCLKIN high to XDx invalid	5		ns
14	td(XCKIH-XDHZ)	Delay time, XCLKIN high to XDx high impedance		18	ns
15	td(XCKIH-XRY)	Delay time, XCLKIN high to XRDY valid#	5	15.5	ns
20	td(XCKIH-XRYLZ)	Delay time, XCLKIN high to XRDY low impedance	5	15.5	ns
21	td(XCKIH-XRYHZ)	Delay time, XCLKIN high to XRDY high impedance#	2P + 5	3P + 15.5	ns

 $[\]P$ P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.

[‡] XBLAST input polarity selected at boot.

[§] XBE[3:0]/XA[5:2] operates as byte enables XBE[3:0] during host-port accesses.

[#] XRDY operates as active-low ready input/output during host-port accesses.

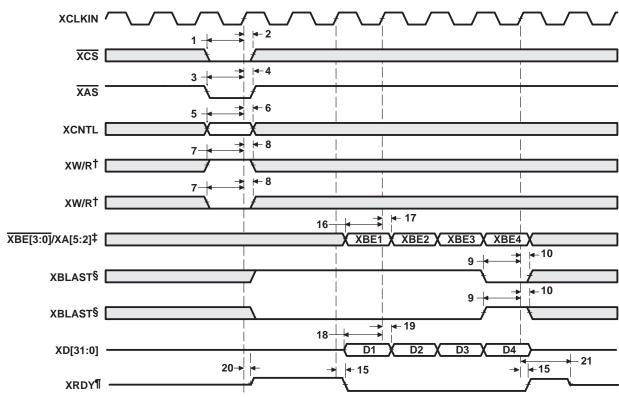
EXPANSION BUS SYNCHRONOUS HOST PORT TIMING (CONTINUED) XCLKIN / **←** 2 xcs [3 -XAS **⊸** 6 XCNTL [**4**−8 xw/R[†] [**4**−8 xw/R†[XBE[3:0]/XA[5:2]‡ XBLAST§ [XBLAST§ [· 13 ➡ 14 **-** 12 XD[31:0] D1 D2 - 21

XRDY¶

20→

Figure 31. External Host as Bus Master—Read

←15


[†] XW/R input/output polarity selected at boot

[‡] XBE[3:0]/XA[5:2] operates as byte enables XBE[3:0] during host-port accesses.

[§] XBLAST input polarity selected at boot

 $[\]P$ XRDY operates as active-low ready input/output during host-port accesses.

EXPANSION BUS SYNCHRONOUS HOST PORT TIMING (CONTINUED)

[†] XW/R input/output polarity selected at boot

Figure 32. External Host as Bus Master—Write

[‡] XBE[3:0]/XA[5:2] operates as byte enables XBE[3:0] during host-port accesses.

[§] XBLAST input polarity selected at boot

[¶]XRDY operates as active-low ready input/output during host-port accesses.

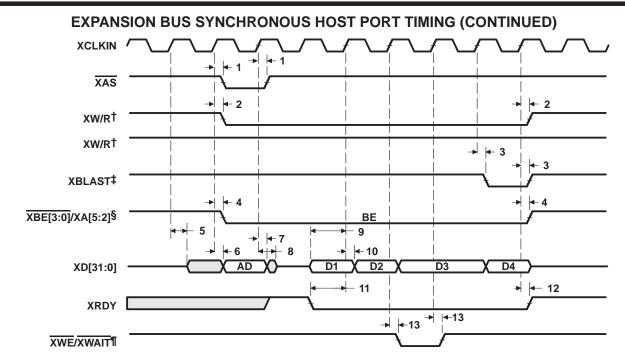
EXPANSION BUS SYNCHRONOUS HOST PORT TIMING (CONTINUED)

timing requirements with 'C6202 as bus master (see Figure 33, Figure 34, and Figure 35)

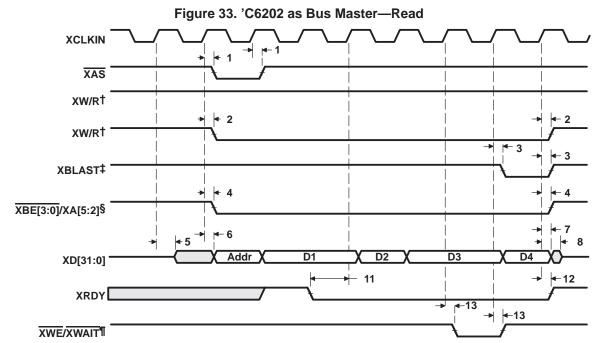
NO.			MIN	MAX	UNIT
9	tsu(XDV-XCKIH)	Setup time, XDx valid before XCLKIN high	4		ns
10	th(XCKIH-XDV)	Hold time, XDx valid after XCLKIN high	2.3		ns
11	t _{su(XRY-XCKIH)}	Setup time, XRDY valid before XCLKIN high [†]	4		ns
12	th(XCKIH-XRY)	Hold time, XRDY valid after XCLKIN high [†]	2.3		ns
14	t _{su} (XBFF-XCKIH)	Setup time, XBOFF valid before XCLKIN high	4		ns
15	th(XCKIH-XBFF)	Hold time, XBOFF valid after XCLKIN high	2.3		ns

TXRDY operates as active-low ready input/output during host-port accesses.

switching characteristics with 'C6202 as bus master (see Figure 33, Figure 34, and Figure 35)


NO.		PARAMETER	MIN	MAX	UNIT
1	td(XCKIH-XASV)	Delay time, XCLKIN high to XAS valid	5	15.5	ns
2	td(XCKIH-XWRV)	Delay time, XCLKIN high to XW/R valid [‡]	5	15.5	ns
3	td(XCKIH-XBLTV)	Delay time, XCLKIN high to XBLAST valid§	5	15.5	ns
4	td(XCKIH-XBEV)	Delay time, XCLKIN high to XBE[3:0]/XA[5:2] valid¶	5	15.5	ns
5	td(XCKIH-XDLZ)	Delay time, XCLKIN high to XDx low impedance	5		ns
6	td(XCKIH-XDV)	Delay time, XCLKIN high to XDx valid		15.5	ns
7	td(XCKIH-XDIV)	Delay time, XCLKIN high to XDx invalid	5		ns
8	td(XCKIH-XDHZ)	Delay time, XCLKIN high to XDx high impedance		18	ns
13	td(XCKIH-XWTV)	Delay time, XCLKIN high to XWE/XWAIT valid#	5	15.5	ns

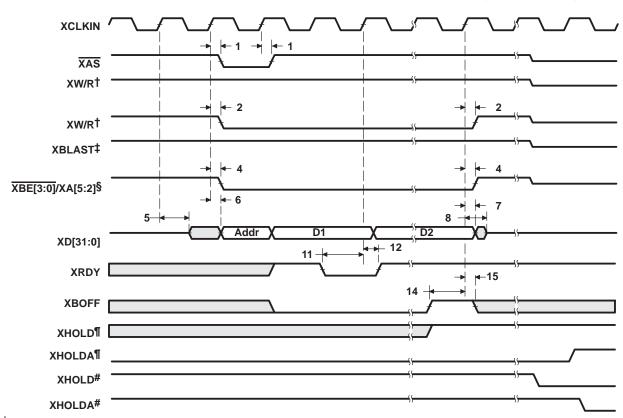
[‡]XW/R input/output polarity selected at boot.


[§] XBLAST output polarity is always active low.

[¶]XBE[3:0]/XA[5:2] operates as byte enables XBE[3:0] during host-port accesses.

[#] XWE/XWAIT operates as XWAIT output signal during host-port accesses.

- [†] XW/R input/output polarity selected at boot
- ‡XBLAST output polarity is always active low.
- § XBE[3:0]/XA[5:2] operates as byte enables XBE[3:0] during host-port accesses. ¶ XWE/XWAIT operates as XWAIT output signal during host-port accesses.



- † XW/R input/output polarity selected at boot
- ‡XBLAST output polarity is always active low.
- § XBE[3:0]/XA[5:2] operates as byte enables XBE[3:0] during host-port accesses.
- ¶ XWE/XWAIT operates as XWAIT output signal during host-port accesses.

Figure 34. 'C6202 as Bus Master-Write

EXPANSION BUS SYNCHRONOUS HOST PORT TIMING (CONTINUED)

[†] XW/R input/output polarity selected at boot

Figure 35. 'C6202 as Bus Master—BOFF Operation||

[‡] XBLAST output polarity is always active low.

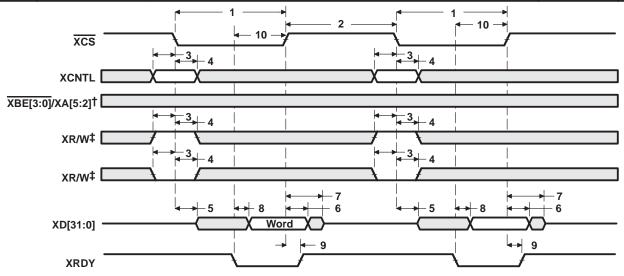
 $[\]S$ XBE[3:0]/XA[5:2] operates as byte enables XBE[3:0] during host-port accesses.

[¶] Internal arbiter enabled

[#] External arbiter enabled

This diagram illustrates XBOFF timing. Bus arbitration timing is shown in Figure 38 and Figure 39.

EXPANSION BUS ASYNCHRONOUS HOST PORT TIMING


timing requirements with external device as asynchronous bus master[†] (see Figure 36 and Figure 37)

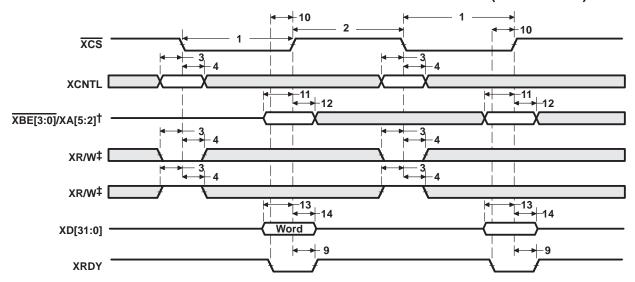
NO.			MIN	MAX	UNIT
1	tw(XCSL)	Pulse duration, XCS low	4P		ns
2	tw(XCSH)	Pulse duration, XCS high	4P		ns
3	tsu(XSEL-XCSL)	Setup time, expansion bus select signals [‡] valid before XCS low	2		ns
4	th(XCSL-XSEL)	Hold time, expansion bus select signals‡ valid after XCS low	2		ns
10	th(XRYL-XCSL)	Hold time, XCS low after XRDY low	Р		ns
11	t _{su(XBEV-XCSH)}	Setup time, XBE[3:0]/XA[5:2] valid before XCS high§	2		ns
12	th(XCSH-XBEV)	Hold time, XBE[3:0]/XA[5:2] valid after XCS high§	2		ns
13	t _{su(XDV-XCSH)}	Setup time, XDx valid before XCS high	2	·	ns
14	th(XCSH-XDV)	Hold time, XDx valid after XCS high	2		ns

 $[\]dagger$ P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.

switching characteristics with external device as asynchronous bus master (see Figure 36 and Figure 37)

NO.		PARAMETER	MIN	MAX	UNIT
5	td(XCSL-XDLZ)	Delay time, XCS low to XDx low impedance	0		ns
6	td(XCSH-XDIV)	Delay time, XCS high to XDx invalid	0	12	ns
7	td(XCSH-XDHZ)	Delay time, XCS high to XDx high impedance		12	ns
8	td(XRYL-XDV)	Delay time, XRDY low to XDx valid	0	4	ns
9	td(XCSH-XRYH)	Delay time, XCS high to XRDY high	0	12	ns

 $[\]dagger$ XBE[3:0]/XA[5:2] operates as byte enables XBE[3:0] during host-port accesses.


Figure 36. External Device as Asynchronous Master—Read

[‡] Expansion bus select signals include XCNTL and XR/W.

[§] XBE[3:0]/XA[5:2] operates as byte enables XBE[3:0] during host-port accesses.

[‡]XW/R input/output polarity selected at boot

EXPANSION BUS ASYNCHRONOUS HOST PORT TIMING (CONTINUED)

 $[\]uparrow \overline{XBE[3:0]}/XA[5:2]$ operates as byte enables $\overline{XBE[3:0]}$ during host-port accesses.

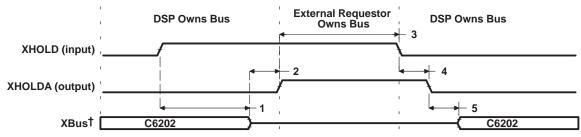
Figure 37. External Device as Asynchronous Master—Write

[‡]XW/R input/output polarity selected at boot

XHOLD/XHOLDA TIMING

timing requirements for expansion bus arbitration (internal arbiter enabled)† (see Figure 38)

NO.			MIN	MAX	UNIT
3	toh(XHDAH-XHDH)	Output hold time, XHOLD high after XHOLDA high	Р		ns


 $[\]overline{\dagger}$ P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.

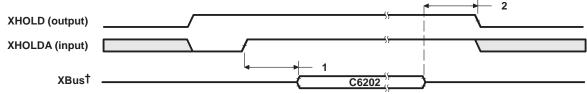
switching characteristics for expansion bus arbitration (internal arbiter enabled)^{†‡} (see Figure 38)

NO.		PARAMETER	MIN	MAX	UNIT
1	^t R(XHDH-XBHZ)	Response time, XHOLD high to XBus high impedance	4P	§	ns
2	td(XBHZ-XHDAH)	Delay time, XBus high impedance to XHOLDA high	0	2P	ns
4	^t R(XHDL-XHDAL)	Response time, XHOLD low to XHOLDA low	4P		ns
5	td(XHDAL-XBLZ)	Delay time, XHOLDA low to XBus low impedance	0	2P	ns

[†] P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns. ‡ XBus consists of $\overline{XBE[3:0]}/XA[5:2]$, \overline{XAS} , $\overline{XW/R}$, and \overline{XBLAST} .

[§] All pending XBus transactions are allowed to complete before XHOLDA is asserted.

[†] XBus consists of XBE[3:0]/XA[5:2], XAS, XW/R, and XBLAST.


Figure 38. Expansion Bus Arbitration—Internal Arbiter Enabled

XHOLD/XHOLDA TIMING (CONTINUED)

switching characteristics for expansion bus arbitration (internal arbiter disabled)† (see Figure 39)

NO.		PARAMETER	MIN	MAX	UNIT
1	td(XHDAH-XBLZ)	Delay time, XHOLDA high to XBus low impedance‡	2P	2P + 10	ns
2	t _d (XBHZ-XHDL)	Delay time, XBus high impedance to XHOLD low [‡]	0	2P	ns

[†] P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns. ‡ XBus consists of $\overline{XBE[3:0]/XA[5:2]}$, \overline{XAS} , $\overline{XW/R}$, and \overline{XBLAST} .

[†] XBus consists of XBE[3:0]/XA[5:2], XAS, XW/R, and XBLAST.

Figure 39. Expansion Bus Arbitration—Internal Arbiter Disabled

ADVANCE INFORMATION

MULTICHANNEL BUFFERED SERIAL PORT TIMING

timing requirements for McBSP^{†‡} (see Figure 40)

NO.				'C6202-200 'C6202-233 'C6202-250	UNIT
				MIN MAX	
2	t _C (CKRX)	Cycle time, CLKR/X	CLKR/X ext	2P	ns
3	tw(CKRX)	Pulse duration, CLKR/X high or CLKR/X low	CLKR/X ext	P-1	ns
5	t (====================================	Setup time, external FSR high before CLKR low	CLKR int	9	ns
	t _{su} (FRH-CKRL)	Setup time, external FSK high before CLKK low	CLKR ext	1	115
6	t. (0)(D) =D) ()	Hold time, external FSR high after CLKR low	CLKR int	6	ns
L	th(CKRL-FRH)	Floid time, external FOX high after CERN low	CLKR ext	3	115
7	+ (55) (61(51)	Setup time, DR valid before CLKR low	CLKR int	8	20
_ ′	tsu(DRV-CKRL)	Setup time, DR valid before CLRR low	CLKR ext	0	ns
8	t. (0)(D) DD) 0	Hold time DR valid after CLKR low	CLKR int	3	20
l °	th(CKRL-DRV)	Hold time, DR valid after CLKR low	CLKR ext	3	ns
10		Saturatime external ESV high hefore CLKV law	CLKX int	9	20
10	^t su(FXH-CKXL)	Setup time, external FSX high before CLKX low	CLKX ext	1	ns
11	t. (0.04 = 14.5	(XI -FXH) Hold time, external FSX high after CLKX low	CLKX int	6	20
	th(CKXL-FXH)		CLKX ext	3	ns

[†] CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted. $\ddagger P = 1/CPU$ clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.

switching characteristics for McBSP^{†‡} (see Figure 40)

NO.	PARAMETER		'C6202-200 'C6202-233 'C6202-250		UNIT	
			_	MIN	MAX	
1	td(CKSH-CKRXH)	Delay time, CLKS high to CLKR/X high for internal CLKR/X generated from CLKS input		4	10	ns
2	t _C (CKRX)	Cycle time, CLKR/X	CLKR/X int	2P§		ns
3	tw(CKRX)	Pulse duration, CLKR/X high or CLKR/X low	CLKR/X int	C – 1¶	C + 1¶	ns
4	td(CKRH-FRV)	Delay time, CLKR high to internal FSR valid	CLKR int	-2	3	ns
9	t voice a man a Dolov time CLKV high to internal ESV valid	CLKX int	-2	3	ns	
9	td(CKXH-FXV)	Delay time, CLKX high to internal FSX valid	CLKX ext	3	9	115
12	t (0) (0) (1) 1) (1)	Disable time, DX high impedance following last data bit	CLKX int	-1	4	ns
12	^t dis(CKXH-DXHZ)	from CLKX high	CLKX ext	3	9	115
13	t	Delay time, CLKX high to DX valid	CLKX int	-1	4	ns
13	td(CKXH-DXV)	Delay time, CLRA high to DA Valid	CLKX ext	3	9	115
44		Delay time, FSX high to DX valid	FSX int	-1	3	-
14	td(FXH-DXV)	ONLY applies when in data delay 0 (XDATDLY = 00b) mode.	FSX ext	3	9	ns

[†] CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted. ‡ Minimum delay times also represent minimum output hold times.

 $\P C = Hort$

S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)

= sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)

H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

 $[\]$ P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.

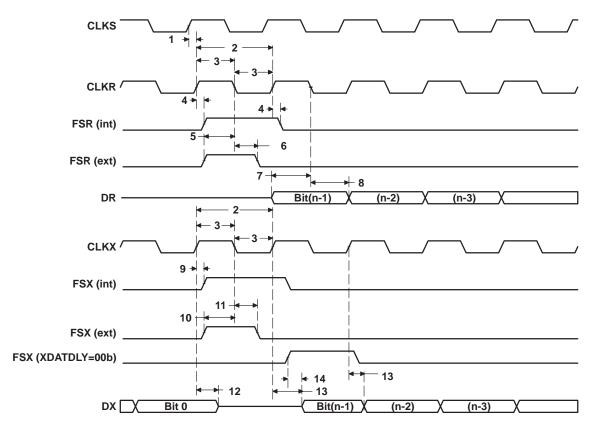


Figure 40. McBSP Timings

SPRS072B - AUGUST 1998 - REVISED AUGUST 1999

MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)

timing requirements for FSR when GSYNC = 1 (see Figure 41)

NO.		'C6202 'C6202 'C6202	2-233	UNIT
		MIN	MAX	
1	t _{su(FRH-CKSH)} Setup time, FSR high before CLKS high	4		ns
2	th(CKSH-FRH) Hold time, FSR high after CLKS high	4		ns

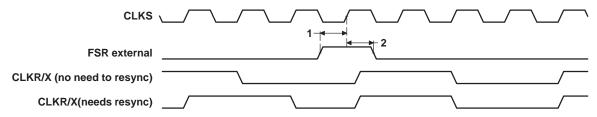


Figure 41. FSR Timing When GSYNC = 1

ADVANCE INFORMATION

MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)

timing requirements for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 0^{†‡} (see Figure 42)

NO.				'C620 'C620 'C620	2-233		UNIT
			MAST	ER	SLA\	/E	
			MIN	MAX	MIN	MAX	
4	t _{su} (DRV-CKXL)	Setup time, DR valid before CLKX low	12		2 – 3P		ns
5	th(CKXL-DRV)	Hold time, DR valid after CLKX low	4		5 + 6P		ns

 $[\]dagger$ P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.

switching characteristics for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 0^{+1} (see Figure 42)

NO.	PARAMETER .		'C6202-200 'C6202-233 'C6202-250				UNIT
			MASTER§		SLAVE		0
		MIN	MAX	MIN	MAX		
1	th(CKXL-FXL)	Hold time, FSX low after CLKX low [¶]	T-2	T + 3			ns
2	td(FXL-CKXH)	Delay time, FSX low to CLKX high#	L-2	L+3			ns
3	t _d (CKXH-DXV)	Delay time, CLKX high to DX valid	-2	4	3P + 4	5P + 17	ns
6	tdis(CKXL-DXHZ)	Disable time, DX high impedance following last data bit from CLKX low	L-2	L+3			ns
7	tdis(FXH-DXHZ)	Disable time, DX high impedance following last data bit from FSX high			P+3	3P + 17	ns
8	td(FXL-DXV)	Delay time, FSX low to DX valid			2P + 2	4P + 17	ns

 $[\]overline{\dagger}$ P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.

T = CLKX period = (1 + CLKGDV) * S

H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP

CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP

[‡] For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

[‡] For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

[§]S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)

⁼ sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)

[¶] FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX and FSR is inverted before being used internally.

[#]FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (CLKX).

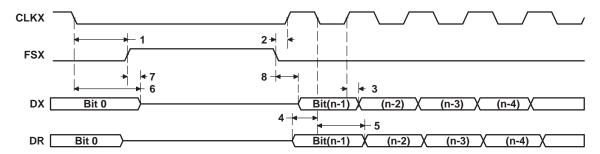


Figure 42. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0

ADVANCE INFORMATION

MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)

timing requirements for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = $0^{\dagger \ddagger}$ (see Figure 43)

NO.		'C6202-200 'C6202-233 'C6202-250			UNIT	
		MAST	ER	SLA\	/E	
		MIN	MAX	MIN	MAX	
4	t _{su(DRV-CKXH)} Setup time, DR valid before CLKX high	12		2 – 3P		ns
5	th(CKXH-DRV) Hold time, DR valid after CLKX high	4		5 + 6P		ns

 $[\]dagger$ P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.

switching characteristics for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = 0^{+1} (see Figure 43)

NO.	PARAMETER		'C6202-200 'C6202-233 'C6202-250				UNIT
			MASTER§		SLAVE		
			MIN	MAX	MIN	MAX	
1	th(CKXL-FXL)	Hold time, FSX low after CLKX low¶	L-2	L+3			ns
2	td(FXL-CKXH)	Delay time, FSX low to CLKX high#	T-2	T + 3			ns
3	t _d (CKXL-DXV)	Delay time, CLKX low to DX valid	-2	4	3P + 4	5P + 17	ns
6	tdis(CKXL-DXHZ)	Disable time, DX high impedance following last data bit from CLKX low	-2	4	3P + 3	5P + 17	ns
7	td(FXL-DXV)	Delay time, FSX low to DX valid	H-2	H + 4	2P + 2	4P + 17	ns

 $[\]dagger$ P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.

H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP

CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP

[#]FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (CLKX).

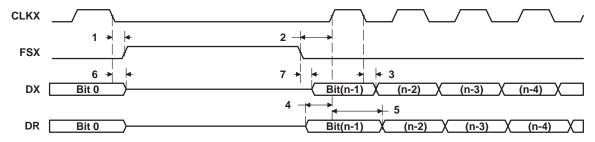


Figure 43. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0

[‡] For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

[‡] For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

[§] S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)

⁼ sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)

T = CLKX period = (1 + CLKGDV) * S

FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX and FSR is inverted before being used internally.

timing requirements for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 1^{†‡} (see Figure 44)

NO.			'C620 'C620 'C620	2-233		UNIT
		MASTER		SLAVE		
		MIN	MAX	MIN	MAX	
4	t _{su(DRV-CKXH)} Setup time, DR valid before CLKX high	12		2 – 3P		ns
5	th(CKXH-DRV) Hold time, DR valid after CLKX high	4		5 + 6P		ns

 $[\]dagger$ P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.

switching characteristics for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 1^{\ddagger} (see Figure 44)

NO.	PARAMETER			UNIT			
			MASTER§		SLAVE		"
			MIN	MAX	MIN	MAX	
1	th(CKXH-FXL)	Hold time, FSX low after CLKX high¶	T – 2	T + 3			ns
2	td(FXL-CKXL)	Delay time, FSX low to CLKX low#	H – 2	H + 3			ns
3	td(CKXL-DXV)	Delay time, CLKX low to DX valid	-2	4	3P + 4	5P + 17	ns
6	^t dis(CKXH-DXHZ)	Disable time, DX high impedance following last data bit from CLKX high	H – 2	H + 3			ns
7	^t dis(FXH-DXHZ)	Disable time, DX high impedance following last data bit from FSX high		·	P+3	3P + 17	ns
8	td(FXL-DXV)	Delay time, FSX low to DX valid			2P + 2	4P + 17	ns

 $^{^{\}dagger}$ P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.

H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP

CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP

For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

[§] S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)

⁼ sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)

T = CLKX period = (1 + CLKGDV) * S

[¶] FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX and FSR is inverted before being used internally.

[#]FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (CLKX).

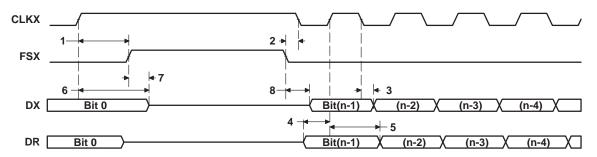


Figure 44. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1

timing requirements for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = $1^{\dagger \ddagger}$ (see Figure 45)

NO.			'C620	2-200 2-233 2-250		UNIT
		MAST	MASTER		SLAVE	
		MIN	MAX	MIN	MAX	1
4	t _{SU(DRV-CKXL)} Setup time, DR valid before CLKX low	12		2 – 3P		ns
5	t _{h(CKXL-DRV)} Hold time, DR valid after CLKX low	4		5 + 6P		ns

 $[\]dagger$ P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.

switching characteristics for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = 1^{†‡} (see Figure 45)

NO.	PARAMETER		'C6202-200 'C6202-233 'C6202-250				UNIT
			MASTER§		SLAVE		0
			MIN	MAX	MIN	MAX	
1	th(CKXH-FXL)	Hold time, FSX low after CLKX high¶	H – 2	H + 3			ns
2	td(FXL-CKXL)	Delay time, FSX low to CLKX low#	T-2	T + 1			ns
3	td(CKXH-DXV)	Delay time, CLKX high to DX valid	-2	4	3P + 4	5P + 17	ns
6	tdis(CKXH-DXHZ)	Disable time, DX high impedance following last data bit from CLKX high	-2	4	3P + 3	5P + 17	ns
7	td(FXL-DXV)	Delay time, FSX low to DX valid	L-2	L + 4	2P + 2	4P + 17	ns

 $^{^{\}dagger}$ P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.

CLKX period = (1 + CLKGDV) * S

CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

¶FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX and FSR is inverted before being used internally.

CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP

CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP

[#]FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (CLKX).

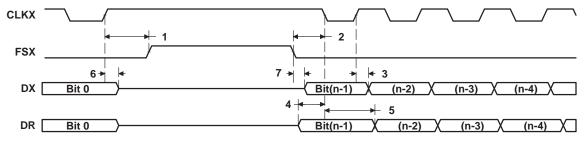


Figure 45. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1

 $[\]ddagger$ For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

[§] S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)

sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)

DMAC, TIMER, POWER-DOWN TIMING

switching characteristics for DMAC outputs† (see Figure 46)

N	О.	PARAMETER		'C6202-200 'C6202-233 'C6202-250		
			MIN	MAX		
1	1	t _{w(DMACH)} Pulse duration, DMAC high	2P-3		ns	

 $[\]dagger$ P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.

Figure 46. DMAC Timing

timing requirements for timer inputs[†] (see Figure 47)

NO.			'C6202 'C6202 'C6202	2-233	UNIT
			MIN	MAX	
1	tw(TINPH)	Pulse duration, TINP high	2P		ns
2	^t w(TINPL)	Pulse duration, TINP low	2P		ns

 $[\]dagger$ P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.

switching characteristics for timer outputs[†] (see Figure 47)

NO.	PARAMETER		'C6202 'C6202 'C6202	UNIT	
			MIN	MAX	
3	tw(TOUTH)	Pulse duration, TOUT high	2P-3		ns
4	tw(TOUTL)	Pulse duration, TOUT low	2P-3		ns

 $[\]dagger$ P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.

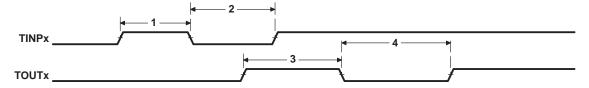


Figure 47. Timer Timing

DMAC, TIMER, POWER-DOWN TIMING (CONTINUED)

switching characteristics for power-down outputs† (see Figure 48)

NO.	PARAMETER		'C6202-200 'C6202-233 'C6202-250		
		MIN	MAX		
1	t _{W(PDH)} Pulse duration, PD high	10P		ns	

 † P = 1/CPU clock frequency in ns. For example, when running parts at 250 MHz, use P = 4 ns.

PD ______1

Figure 48. Power-Down Timing

JTAG TEST-PORT TIMING

timing requirements for JTAG test port (see Figure 49)

NO.			'C6202-200 'C6202-233 'C6202-250		UNIT
			MIN	MAX	
1	t _C (TCK)	Cycle time, TCK		50	ns
3	t _{su} (TDIV-TCKH)	Setup time, TDI/TMS/TRST valid before TCK high	10		ns
4	th(TCKH-TDIV)	Hold time, TDI/TMS/TRST valid after TCK high	5		ns

switching characteristics for JTAG test port (see Figure 49)

NO.	PARAMETER		'C6202-200 'C6202-233 'C6202-250	
		MIN	MAX	
2	t _d (TCKL-TDOV) Delay time, TCK low to TDO valid	0	15	ns

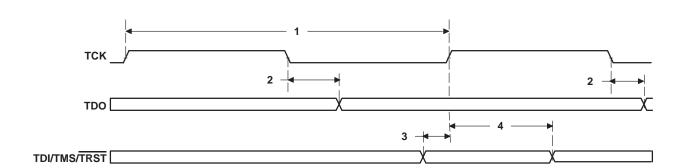
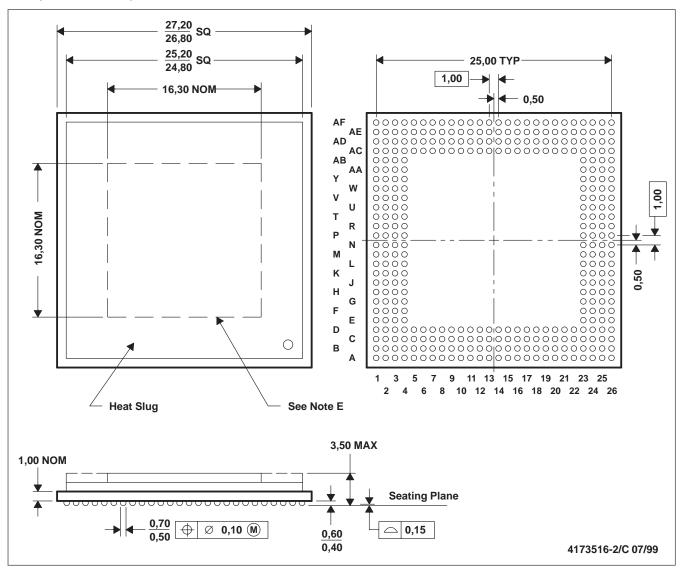



Figure 49. JTAG Test-Port Timing

MECHANICAL DATA

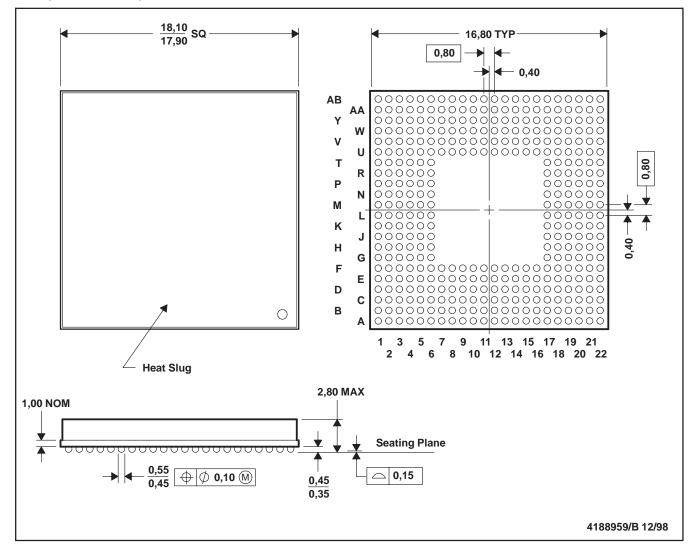
GJL (S-PBGA-N352)

PLASTIC BALL GRID ARRAY

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Thermally enhanced plastic package with heat slug (HSL).
 - D. Flip chip application only
 - E. Possible protrusion in this area, but within 3,50 max package height specification
 - F. Falls within JEDEC MO-151/AAL-1

thermal resistance characteristics (S-PBGA package)

NO		°C/W	Air Flow LFPM†
1	RΘ _{JC} Junction-to-case	0.47	N/A
2	ROJA Junction-to-free air	14.2	0
3	ROJA Junction-to-free air	12.3	100
4	RΘJA Junction-to-free air	10.2	250
5	ROJA Junction-to-free air	8.6	500


†LFPM = Linear Feet Per Minute

MECHANICAL DATA

GLS (S-PBGA-N384)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Thermally enhanced plastic package with heat slug (HSL)
- D. Flip chip application only

thermal resistance characteristics (S-PBGA package)

NO		°C/W	Air Flow LFPM†
1	R⊖ _{JC} Junction-to-case	0.85	N/A
2	R⊖JA Junction-to-free air	21.6	0
3	R⊖ _{JA} Junction-to-free air	17.9	100
4	R⊖ _{JA} Junction-to-free air	14.2	250
5	RΘ _{JA} Junction-to-free air	11.8	500

†LFPM = Linear Feet Per Minute

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated